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Randomized algorithms are gaining ground in high-performance computing applications
as they have the potential to outperform deterministic methods, while still providing accu-
rate results. We propose a randomized solver for distributed multicore architectures to
efficiently solve large dense symmetric indefinite linear systems that are encountered,
for instance, in parameter estimation problems or electromagnetism simulations. The con-
tribution of this paper is to propose efficient kernels for applying random butterfly trans-
formations and a new distributed implementation combined with a runtime (PaRSEC) that
automatically adjusts data structures, data mappings, and the scheduling as systems scale
up. Both the parallel distributed solver and the supporting runtime environment are inno-
vative. To our knowledge, the randomization approach associated with this solver has
never been used in public domain software for symmetric indefinite systems. The under-
lying runtime framework allows seamless data mapping and task scheduling, mapping
its capabilities to the underlying hardware features of heterogeneous distributed architec-
tures. The performance of our software is similar to that obtained for symmetric positive
definite systems, but requires only half the execution time and half the amount of data
storage of a general dense solver.

� 2013 Published by Elsevier B.V.
1. Introduction

The last several years saw the development of randomized algorithms in high performance computing applications. This
increased interest is motivated by the fact that the resulting algorithms are able to outperform deterministic methods while
still providing very accurate results (e.g. random sampling algorithms that can be applied to least squares solutions or low-
rank matrix approximation [1]). In addition to being easier to analyze, the main advantage of such algorithms is that they can
lead to much faster solution by performing a smaller number of floating-point operations (e.g. [2]), or by involving less com-
munication (e.g. [3]). As a result, they potentially allow domain scientists to address larger simulations.

However, to be of full interest for applications, these randomized algorithms must be able to exploit the computing capa-
bilities of current highly distributed parallel systems, which can commonly achieve performance of more than one Tflop/s
per node. Since randomized algorithms are supposed to be useful for very large problems, the main challenge for them is
to exploit efficiently these distributed computing units and their associated memories. As a matter of fact, large-scale linear
algebra solvers from standard parallel distributed libraries like ScaLAPACK [4] often suffer from expensive inter-node com-
munication costs.
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The advent of multicore processors has undermined the dominance of the SPMD programming style, reviving interest in
more flexible approaches such as dataflow approaches. Indeed, several projects [5–9], mostly in the field of numerical linear
algebra, revived the use of Directed Acyclic Graphs (DAG), as an approach to tackle the challenges of harnessing the power of
multicore and hybrid platforms. In [10], an implementation of a tiled algorithm based on dynamic scheduling for the LU fac-
torization on top of UPC (Unified Parallel C) is proposed. Gustavson et al. [11] uses a static scheduling for the Cholesky fac-
torization on top of MPI to evaluate the impact of data representation structures. All these projects propose ad-hoc solutions
to the challenging problem of harnessing all the computing capabilities available on today’s heterogeneous platforms, solu-
tions that do not expose enough flexibility to be generalized outside their original algorithmic design space. In the PaRSEC
project (previously named DAGuE [12]) we address this problem in a novel way. Using a layered runtime system, we decou-
ple the algorithm itself from the data distribution, as the algorithm is entirely expressed as flows of data, and from the under-
lying hardware, allowing the developer to focus solely on the algorithmic level without constraints regarding current
hardware trends. The depiction of the algorithm uses a concise symbolic representation (similar to Parameterized Task
Graph (PTG) proposed in [13]), requiring minimal memory for the DAG representation and providing extreme flexibility
to quickly follow the flows of data starting from any task in the DAG, without having to unroll the entire DAG. As a result,
the DAG unrolls on-demand, and each participant never evaluates parts of the DAG pertaining to tasks executing on other
resources, thereby sparing memory and compute cycles. Additionally, the symbolic representation enables the runtime to
dynamically discover the communications required to satisfy remote dependencies, on the fly, without a centralized coor-
dination. Finally, the runtime provides a heterogeneous environment where tasks can be executed on hybrid resources based
on their availability.

We illustrate in this paper how linear system solvers based on random butterfly transformations can exploit distributed
parallel systems in order to address large-scale problems. In particular, we will show how our approach automatically ad-
justs data structures, mapping, and scheduling as systems scale up. The application we consider in this paper is the solution
of large dense symmetric indefinite systems. Even though dense symmetric indefinite matrices are less common than sparse
ones, they do arise in practice, for instance in parameter estimation problems, when considering the augmented system ap-
proach [14, p. 77], and in constrained optimization problems [15, p. 246].

For instance, the symmetric indefinite linear system
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arises from the optimization problem
min
1
2
kr � bk2

2 subject to AT r ¼ 0; ð2Þ
where x is the vector of Lagrange multipliers, r ¼ b� Ax is the residual, and I is the identity matrix.
Another class of applications is related to simulations in electromagnetics, when the 3-D Maxwell equations are solved in

the frequency domain. The goal is to solve the Radar Cross Section (RCS) problem that computes the response of an object to
the wave. In that case, the discretization by the Boundary Element Method (BEM) yields large dense symmetric complex sys-
tems which are non Hermitian [16].

Many of the existing methods do not exploit the symmetry of the system, which results in extra computation and extra
storage. The problem size commonly encountered for these simulations is a few hundreds of thousands. When the matrix
does not fit into the core memories of the computer, this may require the use of out-of-core methods that use disk space
as auxiliary memory, which degrades performance (note that an option for very large size is iterative/multipole methods,
for which the matrix does not need to be stored in memory). Our in-core solver will be an alternative to these existing meth-
ods by minimizing the number of arithmetical operations and data storage.

Symmetric indefinite systems are classically solved using a LDLT factorization
PAPT ¼ LDLT; ð3Þ
where P is a permutation matrix, A is a symmetric square matrix, L is unit lower triangular, and D is block-diagonal, with
blocks of size 1� 1 or 2� 2.

To our knowledge, there is no parallel distributed solver in public domain libraries (e.g. ScaLAPACK) for solving dense
symmetric indefinite systems using factorization (3). This is why, in many situations, large dense symmetric indefinite sys-
tems are solved via LU factorization, resulting in an algorithm that requires twice as much, both arithmetical operations and
storage than LDLT. Moreover, as mentioned in [14], the pivoting strategy adopted in LAPACK [17] (based on the Bunch-Kauf-
man algorithm [18]) does not generally give a stable method for solving the problem (2), since the perturbations introduced
by roundoff do not respect the structure of the system (1).

The approach we propose in this paper avoids pivoting thanks to a randomization technique initially described in [19] for
the LU factorization. The main advantage of randomizing here is that we can avoid the communication overhead due to piv-
oting (this communication cost can represent up to 40% of the global factorization time depending on the architecture, and
on the problem size [3]). The resulting distributed solver enables us to address the large dense symmetric indefinite systems
cite this article in press as: M. Baboulin et al., An efficient distributed randomized algorithm for solving large dense symmetric
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mentioned before and for which there is no implementation in ScaLAPACK. It is combined with an innovative runtime sys-
tem that allows seamless data mapping and task scheduling on heterogeneous distributed architectures.
2. A distributed randomized algorithm

2.1. Theoretical background on Symmetric Random Butterfly Transformation (SRBT)

We recall in this section the main definitions and results related to the randomization approach that is used for symmet-
ric indefinite systems. The randomization of the matrix is based on a technique initially described in [19,3] for general sys-
tems and applied in [20] for symmetric indefinite systems (we can find in [19] a small example with a 2-by-2 matrix that
illustrates how randomization can be used instead of pivoting). The procedure to solve Ax ¼ b, where A is symmetric, using a
random transformation and the LDLT factorization is:

1. Compute Ar ¼ UT AU, with U a random matrix.
2. Factorize Ar ¼ LDLT (without pivoting).
3. Solve Ary ¼ UT b and compute x ¼ Uy.

The random matrix U is chosen among a particular class of matrices called recursive butterfly matrices and the resulting
transformation is referred to as Symmetric Random Butterfly Transformation (SRBT). The LDLT factorization without piv-
oting (step 2 above) is performed using a tiled algorithm already described in [21].

We recall that a butterfly matrix is defined as any n-by-n matrix of the form:
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where n P 2 and R and S are random diagonal and nonsingular n=2-by-n=2 matrices.
A recursive butterfly matrix U of size n and depth d is a product of the form
U ¼ Ud � � � � � U1; ð5Þ
where Uk (1 6 k 6 d) is a block diagonal matrix expressed as
Uk ¼

B1
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each Bi being a butterfly matrix of size n=2k�1. In particular U1 is a butterfly as defined in formula (4). Note that this definition
requires that n is a multiple of 2d which can always be obtained by ‘‘augmenting’’ the matrix A with additional 1’s on the
diagonal.

We generate the random diagonal values used in the butterflies as eq=10, where q is randomly chosen in � 1
2 ;

1
2

� �
. This

choice is suggested and justified in [19] by the fact that the determinant of a butterfly has an expected value 1. Then the
random values ri used in generating butterflies are such that
e�1=20
6 ri 6 e1=20;
We use the POSIX function random() for generating the pseudo-random number sequence and we always initialize the seed
to zero (via a call to srandom()), for reproducibility reasons. Using these random values, it is shown in [21] that the 2-norm
condition number of the randomized matrix Ar verifies
cond2ðArÞ 6 1:2214dcond2ðAÞ ð7Þ
and thus is kept almost unchanged by the randomization for small values of d. We recall also that the LDLT algorithm without
pivoting is potentially unstable [22, p. 214], due to a possibly large growth factor. We can find in [19] explanations about
how recursive butterfly transformations modify the growth factor of the original matrix A. To ameliorate this potential insta-
bility, we systematically add in our method a few steps of iterative refinement in the working precision as indicated in [22, p.
232]. We can find in [20] numerical experiments on a collection of matrices where SRBT + LDLT is more accurate than non-
pivoting LDLT and has similar accuracy as the Bunch–Kaufman algorithm.

A butterfly matrix and a recursive butterfly matrix can be stored in a packed storage using a vector and a matrix, respec-
tively. It is also shown in [21] that the number of operations involved in randomizing A by an SRBT of depth d is about 2dn2.
We will consider a number of recursions d such that d < log2n� n. Numerical tests described in [20] and performed on a
collection of matrices from the Higham’s Matrix Computation Toolbox [22] have shown that, in practice, d ¼ 2 enables us
to achieve satisfying accuracy. Similarly to the product of a recursive butterfly by a matrix, the product of a recursive but-
terfly by a vector does not require the explicit formation of the recursive butterfly since the computational kernel will be a
cite this article in press as: M. Baboulin et al., An efficient distributed randomized algorithm for solving large dense symmetric
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product of a butterfly by a vector, which involves OðnÞ operations. Then the computation of UT b and Uy can be performed in
OðdnÞ flops and, for small values of d, can be neglected compared to the Oðn3Þ cost of the factorization.

2.2. Randomization kernels

As described in Section 2.1, the original linear system can be transformed using U of Eq. (5) such that
Please
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Ax ¼ b � UT AU|fflffl{zfflffl}
Ar

U�1x|ffl{zffl}
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¼ UT b|{z}
c

: ð8Þ
For simplicity, n (order of matrices U and A) is supposed to be a multiple of 2d hereafter (if not the system is augmented with
additional 1’s on the diagonal).

In order to transform the system Ax ¼ b, two kernels are required:
Ar ¼ UT AU; ð9Þ

c ¼ UT b: ð10Þ
After solving Ary ¼ c; x is obtained by
x ¼ Uy: ð11Þ
Eqs. (10) and (11) can be taken as particular cases of Eq. (9), where the U matrix on the right side of A is an identity matrix.
This means that the data dependencies described in what follows are similar but simpler for Eqs. (10) and (11). Since the
implementation uses the same principle for all three operations, only UT AU is detailed.

Using the definition of the recursive matrix U given in Eq. (5), the randomized matrix Ar can be expanded as
Ar ¼ UT
1 � UT

2 � � � � � UT
d � A� Ud � � � � � U2 � U1:
Note that Ui is a sparse matrix, with sparsity pattern as shown in Fig. 1, and that the matrix product of the Ui’s results in a
different sparsity pattern, which depends on the number of levels of recursion. To avoid storing the product of Ui and to
maintain the symmetry, the computation can be performed by recursively computing
Aði�1Þ
r ¼ UT

i AðiÞUi;
where AðdÞ ¼ A and Ar ¼ Að0Þr .
It can be observed that, for each level, UT

i AðiÞUi can be written as blocks given by BT
i AijBj. For instance, for the second level
UT
2Að2ÞU2 ¼

BT
1
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Hence, the so-called core kernel of a random butterfly transformation is given by
BT
i AijBj; ð12Þ
where Aij is a block of A and B� is a random butterfly matrix, both of size m�m. The block Aij can either be symmetric (diag-
onal block, i.e. i ¼ j) or non-symmetric (off-diagonal block, i.e. i – j).

Recalling that B has a well defined structure
B ¼
R S

R �S

� 	
and BT ¼

R R

S �S

� 	
;

where R and S are diagonal matrices, and given that Aij is divided into four submatrices of same size, such as
Aij ¼
TL TR

BL BR

� 	
Fig. 1. Sparsity pattern of matrix U.
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and that
Please
indefi
WTL ¼ ðTLþ BLÞ þ ðTRþ BRÞ;
WBL ¼ ðTL� BLÞ þ ðTR� BRÞ;
WTR ¼ ðTLþ BLÞ � ðTRþ BRÞ;
WBR ¼ ðTL� BLÞ � ðTR� BRÞ:
Eq. (12) can be written as
BT
i AijBj ¼

R �WTL � R R �WTR � S
S �WBL � R S �WBR � S

� 	
:

Note that only the signs differ in calculating each W�. Hence, all four cases can be generalized as
W ¼ ðTL � BLÞ � ðTR � BRÞ; ð13Þ
where the operator � denotes an addition or a subtraction. Eq. (13) shows that each matrix W� depends on all four subma-
trices of Aij. More specifically, any given element of W depends on four elements of A. Therefore, the data dependencies
among elements could be depicted as:
1 2 3 1 2 3
2 4 5 2 4 5
3 5 6 3 5 6
1 2 3 1 2 3
2 4 5 2 4 5
3 5 6 3 5 6

2
666666664

3
777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Symmetric

1 4 7 1 4 7
2 5 8 2 5 8
3 6 9 3 6 9
1 4 7 1 4 7
2 5 8 2 5 8
3 6 9 3 6 9

2
666666664

3
777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
General
where same numbers means these elements depend on each other. For the symmetric case, the strictly upper triangular part
is not calculated, and for this work, not stored either. Hence, elements above the diagonal (i < j) must be computed as their
transpose, i.e. Aij is read and written as Aji.

This can be extended to blocks, or tiles, to comply with the tiled LDLT algorithm presented in [21]. If each number above is
taken as a tile (or block), the data dependencies can be sketched as in Fig. 2. The actual computation can be done in different
ways; details of the approach adopted in this work are given in Section 2.3.

2.3. Implementing SRBT randomization using PaRSEC

We use the PaRSEC [12] runtime system to implement the SRBT transformation and the subsequent LDLT factorization
with no pivoting. PaRSEC employs a dataflow programming and execution model to provide a dynamic platform that can
address the challenges posed by distributed heterogeneous many-core resources. The central component of the system,
the runtime, combines the task and dataflow information of the source program with supplementary information provided
by the user – such as the distribution of data, or hints about the importance of different tasks – and orchestrates the exe-
cution of the tasks on the available hardware. We suggest to the interested reader to delve into the details of the PaRSEC
Fig. 2. SRBT core kernel (BT
i AijBj), data dependencies among tiles of Aij , given by matching colors.
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programming environment through [23]. PaRSEC enables the algorithm developer to ignore all details that do not relate to
the algorithm being implemented, including system and hardware properties. PaRSEC takes as input:

1. a set of kernels that will operate on the user data, in the form of compiled functions inside a library or object files,
2. an algebraic description of the data-flow edges between the tasks that will execute the kernels, in a specific format

that we refer to as the JDF (for Job Data Flow).

Given this input, PaRSEC will automatically handle the communication, task placement, memory affinity, load balancing,
work stealing, and all other aspects of high performance parallel programming that are critical for achieving good perfor-
mance, but constitute a nuisance to an algorithm developer.

In our implementation over PaRSEC, the flow of data is maintained with the most basic unit of data being not a single
element, but a tile (nb � nb elements). A tile can be a block of contiguous memory, or more generally a block of memory con-
taining data separated by strides in any way that an MPI datatype can describe. Moreover, we assume that the input matrix,
given to us by the calling application, is organized according to the format used in the PLASMA [24] library. That is, tiles of
contiguous data are stored in a column major order. As discussed in Section 2.2 the data dependencies of the SRBT are those
dictated by Eq. (13) and exhibit a symmetry. For SRBT at depth 1, the symmetry is about the horizontal and vertical lines that
pass through the center of the matrix. For SRBT at depth 2, each quarter of the matrix is independent, and the symmetry is
about the center of each quarter. Clearly, if the tile size is such that the number of tiles is not divisible by 2d, then the sym-
metries will cause data dependencies that will cross the tile boundaries.

As an example, Fig. 4 depicts the case where a matrix is divided in 3 � 3 tiles. Eq. (13) demands that each element of each
quarter of the matrix is processed with the corresponding elements of the other three quarters of the matrix. However, here,
the number of tiles is not divisible by the number of blocks for a butterfly level 1, and therefore processing any tile of the top
left quarter requires elements from the other quarters that belong to multiple tiles. The largest blocks of memory that do not
cross tile boundaries and have matching blocks are those depicted with the different colors in Fig. 4. Clearly, for higher levels
of the SRBT transformation, the situation can become even more complicated, as is depicted in Fig. 5, where the matrix is
organized in 5 � 5 tiles which is neither divisible by 21, nor 22.

While choosing a tile size that creates this situation will unequivocally lead to performance degradation (since there will
be four times as many messages of significantly smaller size), our implementation of the SRBT transformation supports arbi-
trary tile sizes and number of tiles. There are two ways to implement this with PaRSEC. The first is to transfer, for every tile,
all tiles that contain matching data, perform the core kernels on the consolidated data, and then transfer the results back to
the original location of the tiles. The second way is to logically subdivide the tiles into segments that do not cross tile bound-
aries (as depicted in Figs. 4 and 5 with different colors), and operate on this logical segment space. We chose to implement
the latter approach, as it does not perform unnecessary data transfers, since it does not transfer the parts of the tiles that will
not be used. We made this choice because the computation performed by SRBT is relatively light weight (Oðn2Þ) and thus it
would be difficult to hide the additional overhead of the unnecessary communication.

Besides the performance concerns, there is a correctness concern. As discussed in Section 2.2, regardless of the size of a
contiguous block, all four WTL; WBL; WTR, and WBL require the same data (TL, BL, TR and BR) and also overwrite this data.
Clearly, the computation of all four W� must be performed before any original data is overwritten, using temporary memory,
in a double buffering fashion. PaRSEC provides mechanisms for handling the allocation and deallocation of temporary buffers
of size and shape that match a given MPI datatype, simplifying the process.

Fig. 3 depicts a snippet of the JDF file that PaRSEC will use as input to guide the execution of the different tasks and the
necessary communication between them. As is implied by its name, task Diag will process the segments that lie on the diag-
onal of the matrix. The execution space of the task goes up only to the middle of the matrix, since, due to the translation
symmetry we mentioned earlier, the four quarters of the matrix need to be processed together to generate the result. For
this reason, the Diag task communicates with the Reader_⁄ tasks to receive the corresponding segments from the three quar-
ters of the matrix, top left (TL), bottom left (BL) and bottom right (BR) and sends back the resulting segments to the Writer_⁄
tasks. Clearly, since the matrix is symmetric and this task is processing diagonal blocks, there is no need to fetch the top right
block, since it contains the same data as the bottom left block, transposed.

In addition to specifying which tasks constitute communication peers, the JDF specifies the type of data to be exchanged.
This can be done with a predetermined, static type, or – as is the case here – using C code that will compute the appropriate
type, at runtime, based on parameters of the task, such as ‘‘i’’ that identify the segment that is being processed. In this exam-
ple we make call to a C function called seg2type().

The reason for calculating the datatype at runtime becomes clearer if we consider an example from Fig. 5. In particular, let
us look at the top left tile and consider that we are processing the (blue colored) segment that is in the bottom left of the tile
and is short and wide. Fig. 7 shows a magnified version of this tile (with fainter colors for readability). Because of the data
dependencies of SRBT, the data of the blue segment have to be considered independently of the rest of the tile. However, as
shown in Fig. 7, the segment itself is not stored contiguously in memory, but it is stored within a tile. Nevertheless, given the
start and end points of the segment, the length of a contiguous block of data, and the stride between blocks of data, we can
process the data of the segment in a systematic way and transfer them over the network without wasting bandwidth. The
need for dynamic discovery of the type arises because, as can be derived by the multitude of segment shapes and sizes in
Please cite this article in press as: M. Baboulin et al., An efficient distributed randomized algorithm for solving large dense symmetric
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Fig. 3. Part of the PaRSEC input file, JDF, containing the description of the Diag task.

Fig. 4. Tile count (3 � 3) non divisible by 21.
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Fig. 5, each segment can potentially have a different type. Since the types depend on the matrix size and the size (or count) of
tiles in the matrix, it is impossible to assign those types statically.

Fig. 6 shows the Direct Acyclic Graph (DAG) that describes the execution of a level 1 SRBT for a matrix with 4 � 4 tiles. We
can see that the three tasks (Diag (0), Diag (1) and Lower (1,0)) that process the top left quarter of the matrix do not depend
on each other and can therefore run independently. Also, the DAG clearly shows the communication edges between the pro-
cessing tasks and the corresponding Reader and Writer tasks that will fetch the data from the other quarters of the matrix.
Interestingly, the DAG of Lower (1,0) shows that data is read from the bottom left quarter twice (Reader_BL (1,0) and Read-
er_BL (0,1)). This is because the matrix is symmetric and lower triangular, so all data that would belong to the top right quar-
ter are instead found at the transpose location in the bottom left quarter.

Unlike the SRBT transformation, the LDLT factorization was rather straightforward to implement in PaRSEC. In particular,
the operation exists as a C code in the PLASMA library, similar to the pseudocode shown in [21]. Because of that, we were
able to use the kernels verbatim from the PLASMA library and generate the JDF automatically using the serial code compiler
of PaRSEC (followed by hand-optimizations). The DAG of this factorization on a 4 � 4 tile matrix is depicted in Fig. 8. The
mapping of tasks onto nodes obeys the ‘‘owner computes’’ rule. Each task will modify some data. It is thus preferable if it
executes on the node where this data resides. The data distribution follows a two-dimensional block cyclic pattern. The
actual data placement depends on the number of nodes and the process grid – both user configurable parameters. Therefore,
the mapping of tasks onto nodes is decided after the run-time has established the data placement for a given execution; so
each task is placed such that it has local access to the data it modifies.
Please cite this article in press as: M. Baboulin et al., An efficient distributed randomized algorithm for solving large dense symmetric
indefinite linear systems, Parallel Comput. (2014), http://dx.doi.org/10.1016/j.parco.2013.12.003

http://dx.doi.org/10.1016/j.parco.2013.12.003


Fig. 5. Tile count (5 � 5) non divisible by 22, or 21.

Fig. 6. SRBT DAG for 4 � 4 tile matrix.

Fig. 7. Segment data inside a tile.
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3. Performance results

The performance experiments were performed on a 16 node cluster with Infiniband 20G. Each node features two NUMA
Nehalem Xeon E5520 processors clocked at 2.27 GHz, with four cores each and 2 GB of memory (4 GB total per node). The
Infiniband NICs are connected through PCI-E and the operating system is Linux 2.6.31.6-2. All experiments presented in this
paper were performed using double precision arithmetics.

Fig. 9 shows the results of problem scaling when all 16� 8 ¼ 128 cores of the cluster are used. We plot the LDLT with and
without the SRBT transformation and we separate, into two different curves, the cases where the number of tiles is divisible
by 22 (d ¼ 2 since we perform two levels of SRBT) and the cases where it is non-divisible. Also, the figure includes the exe-
cution time of Cholesky and LU on a matrix of the same size. These curves help give some context to our measurements.
Cholesky can only operate on a subset of the matrices that SRBT + LDLT can operate on, but it consists of a lower bound
in the execution time of SRBT + LDLT, since it performs slightly less operations and communication (because there is no ran-
domization). On the other hand, LU is a general factorization algorithm, but in terms of execution time it provides us with an
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Fig. 8. LDLT DAG for 4 � 4 tile matrix.
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Fig. 9. Problem scaling comparison of LDLT+SRBT against Cholesky on a 16� 8 ¼ 128 core cluster.
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upper bound, since it performs significantly more operations. We provide both a linear and a logarithmic plot of the data,
since the former tends to exaggerate the larger values at the expense of the small ones and vice versa.

In addition, we show, in Fig. 10, the performance of LDLT+SRBT in Gflops per second. In this figure we have excluded LU,
since it algorithmically performs a different number of operations, but we provide the value of the ‘‘practical peak’’. We esti-
mate this peak by measuring the performance of DGEMM (double precision, general, matrix–matrix multiply) operations on
the CPU cores without any communication, or synchronization between them. From these graphs we can make the following
observations:

1. LDLT, even without the SRBT, is slightly slower than Cholesky because of (a) additional synchronization (due to the
scaling of the diagonal at the end of the factorization) and (b) the broadcasting of the diagonal elements during the
factorization.

2. When the number of tiles is divisible by 2d, SRBT adds a small overhead, which is especially small when the number
of tiles is divisible by 32 (2⁄number of processors) since that helps with the process-to-tile mapping.
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3. When the number of tiles is not divisible by 2d, SRBT adds significant overhead.
4. Even in the worst case, SRBT + LDLT is significantly faster than LU, and the difference in execution time grows with

the problem size.

The first conclusion that can be drawn from these observations is that for matrices that are symmetric, but not positive def-
inite, there is a clear advantage in using SRBT+LDLT instead of LU in terms of performance. Second, it is important, for per-
formance, to have a number of tiles that is divisible by 2d, i.e., 4, and it is even better if the number of tiles is divisible by the
number of nodes that participate in the solution. Since the matrix tile size (and thus the number of tiles in the matrix) is a
parameter chosen by the application that calls the PaRSEC implementation of the algorithm, we provide this insight as a sug-
gestion to the application developers who might wish to use our code.

Fig. 11 presents strong scaling results for a moderate problem size (N = 46 K). Both execution time and operations per sec-
ond are depicted in the graph. Clearly, the algorithm exhibits good performance, similar to that of Cholesky and rather close
to the practical peak of the machine. Interestingly, the performance drops for the cases when 6 and 12 nodes were used. The
reason for this behavior is that in these cases, the number of nodes does not divide the number of tiles, and thus the (2D
block-cyclic) mapping of tiles to nodes creates additional communication.
4. Conclusion

We described an innovative implementation of a randomized algorithm for solving large dense symmetric indefinite sys-
tems on clusters of multicores. Such solvers have immediate application in several domains, such as the Radar Cross
Section problems in Electromagnetism. Existing direct methods, generally based on LU solvers, have a computational and
storage cost increased by a factor of two compared to the approach proposed in this paper. The randomization step, used
in our approach, allows us to eliminate the pivoting completely and therefore reduce the critical path. Instead, a
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communication pattern with higher parallelism, which takes place prior to the factorization, is used to apply a precondition-
er to the original matrix. The cost of this randomization step is significantly lower than the overall cost of pivoting. The ran-
domization and the LDLT algorithms have been implemented using the PaRSEC runtime system. Due to the tile data layout
used by the proposed algorithm, the runtime is capable of enforcing a strict data locality scheduling strategy, resulting in
high cache locality. As a result the performance obtained is similar to the Cholesky solver, and close to the practical peak
of the platform. We showed that for symmetric indefinite systems, the proposed algorithm, together with an efficient run-
time, is a better performing approach than LU on these systems, and therefore a well suited replacement for it. More gen-
erally this illustrates how randomized algorithms can enhance performance by decreasing the amount of communication in
linear algebra algorithms.
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