
HABILITATION A DIRIGER DES

RECHERCHES

présentée à l’Université Paris-Sud

Spécialité: Informatique

par

Marc Baboulin

Mâıtre de conférences, Université Paris-Sud
Chaire Inria Saclay - Île-de-France

Résolutions rapides et fiables pour les solveurs d’algèbre linéaire
numérique en calcul haute performance.

Fast and reliable solutions for numerical linear algebra solvers in
high-performance computing.

Jean-Claude Bajard Professeur, Université Pierre et Marie Curie France Examinateur
Philippe Dague Professeur, Université Paris-Sud France Président du Jury
Frédéric Desprez Directeur de Recherche, Inria/Ens Lyon France Rapporteur
Jack Dongarra Professeur, University of Tennessee USA Examinateur
Serge Gratton Professeur, Enseeiht Toulouse France Membre invité
Philippe Langlois Professeur, Université de Perpignan France Rapporteur
Jose Roman Professeur, Universitat Politècnica de València Espagne Rapporteur
Brigitte Rozoy Professeur, Université Paris-Sud France Examinatrice

Résumé

Dans cette Habilitation à Diriger des Recherches (HDR), nous présentons notre recherche
effectuée au cours de ces dernières années dans le domaine du calcul haute-performance.
Notre travail a porté essentiellement sur les algorithmes parallèles pour les solveurs d’algèbre
linéaire numérique et leur implémentation parallèle dans les bibliothèques logicielles du
domaine public. Nous illustrons dans ce manuscrit comment ces calculs peuvent être
accelérés en utilisant des algorithmes innovants et être rendus fiables en utilisant des
quantités spécifiques de l’analyse d’erreur.

Nous expliquons tout d’abord comment les solveurs d’algèbre linéaire numérique peu-
vent être conçus de façon à exploiter les capacités des calculateurs hétérogènes actuels
comprenant des processeurs multicœurs et des GPUs. Nous considérons des algorithmes
de factorisation dense pour lesquels nous décrivons la répartition des tâches entre les
différentes unités de calcul et son influence en terme de coût des communications. Ces cal-
culs peuvent être également rendus plus performants grâce à des algorithmes en précision
mixte qui utilisent une précision moindre pour les tâches les plus coûteuses tout en calcu-
lant la solution en précision supérieure.

Puis nous décrivons notre travail de recherche dans le développement de solveurs
d’algèbre linéaire rapides qui utilisent des algorithmes randomisés. La randomisation
représente une approche innovante pour accélérer les calculs d’algèbre linéaire et la classe
d’algorithmes que nous proposons a l’avantage de réduire la volume de communications
dans les factorisations en supprimant complètement la phase de pivotage dans les systèmes
linéaires. Les logiciels correspondants on été développés pour architectures multicœurs
éventuellement accélérées par des GPUs.

Enfin nous proposons des outils qui nous permettent de garantir la qualité de la solution
calculée pour les problèmes de moindres carrés sur-déterminés, incluant les moindres carrés
totaux. Notre méthode repose sur la dérivation de formules exactes ou d’estimateurs pour
le conditionnement de ces problèmes. Nous décrivons les algorithmes et les logiciels qui
permettent de calculer ces quantités avec les bibliothèques logicielles parallèles standards.

Des pistes de recherche pour les années à venir sont données dans un chapitre de con-
clusion.

Mots clés: Calcul haute-performance, solveurs d’algèbre linéaire dense, systèmes
linéaires, moindres carrés linéaires, processeurs multicœurs, Graphics Processing Units
(GPU), algorithmes randomisés, analyse d’erreur inverse, estimation de conditionnement,
LAPACK, ScaLAPACK, PLASMA, MAGMA.

3

4

Abstract

In this “Habilitation à Diriger des Recherches” (HDR), we present our research in high-
performance scientific computing over the recent years. Our work has been mainly related
to parallel algorithms for numerical linear algebra solvers and their parallel implemen-
tation in public domain software libraries. We illustrate in this manuscript how these
calculations can be accelerated using innovative algorithms and be made reliable using
specific quantities in error analysis.

First we explain how numerical linear algebra solvers can be designed to exploit the
capabilities of current heterogeneous multicore+GPU systems. We consider dense fac-
torization algorithms for which we describe the work splitting between the architectural
components and its influence in terms of communication cost. These computations can
also be significantly enhanced thanks to mixed precision algorithms that use lower preci-
sion for the most expensive tasks while achieving higher precision accuracy for the results.

Then we present our research in developing fast linear agebra solvers using randomized
algorithms. Randomization represents a very promising approach to accelerate linear
algebra computations and the class of algorithms that we developed has the advantage
of reducing the amount of communication in dense factorizations by removing completely
the pivoting phase in linear system solutions. The resulting software has been developed
for multicore machines possibly accelerated by GPUs.

Finally we propose numerical tools that enable us to assess the quality of the computed
solution of overdetermined linear least squares, including the total least squares approach.
Our method is based on deriving exact values or estimates for the condition number of
these problems. We describe algorithms and software to compute these quantities using
standard parallel libraries.

Research tracks for the coming years are given in a concluding chapter.

Keywords: High-performance computing, dense linear algebra solvers, linear sys-
tems, linear least squares, multicore processors, Graphics Processing Units (GPU), ran-
domized algorithms, backward error analysis, condition number estimation, LAPACK,
ScaLAPACK, PLASMA, MAGMA.

5

6

Contents

Introduction 1

1 Taking advantage of parallel multicore-GPU architectures 3

1.1 Introduction to heterogeneous computing 3

1.2 Hybrid multicore-GPU solvers . 5

1.2.1 Designing hybrid algorithms in dense linear algebra factorizations . . 5

1.2.2 Application to the LU factorization 6

1.2.3 Numerical experiments on hybrid LU solvers 8

1.2.3.1 Performance results on single and multi GPUs 8

1.2.3.2 Accuracy of hybrid LU implementations 10

1.3 Mixed precision algorithms . 11

2 Accelerating linear system solutions with randomized algorithms 15

2.1 Introduction to randomization for linear systems 15

2.2 How to avoid pivoting in linear systems using randomization 18

2.2.1 Symmetric Random Butterfly Transformation (SRBT) 18

2.2.2 Efficient SRBT algorithm for symmetric matrices 19

2.2.3 Tiled LDL T factorization . 22

2.2.4 Scheduling issues . 23

2.3 Numerical experiments . 24

2.3.1 Accuracy results . 24

2.3.2 Performance results . 27

3 Using condition numbers to assess numerical quality in high-performance
computing applications 31

3.1 Introduction to condition numbers . 31

3.2 Computing least squares condition numbers 33

3.2.1 Least squares conditioning . 33

3.2.2 Statistical condition estimation . 34

3.2.3 Using HPC libraries to evaluate least squares conditioning 36

3.2.3.1 Computation with (Sca)LAPACK 36

3.2.3.2 Computation with MAGMA 37

3.3 The total least squares approach . 39

3.3.1 Conditioning of the total least squares 39

3.3.2 Limitation of the first-order approach 42

i

Conclusions and perspectives 45

Bibliography 49

ii

Introduction

A major challenge for the high-performance computing (HPC) community is to develop
efficient algorithms that take advantage of current parallel architectures such as multi-
core processors or Graphics Processing Units (GPU). In particular, the transition from
traditionally based MPI-only parallelism to MPI associated with many-core requires the
rewriting of many algorithms in existing software [30], including for instance the public
domain libraries LAPACK [2] and ScaLAPACK [21]. Also with the increase in paral-
lelism and heterogeneity, the data-communication costs become more than ever a major
bottleneck. This requires to investigate new approaches, sometimes non conventional in
numerical libraries (e.g. randomized algorithms), in order to reduce communication at its
minimum. At the same time, there is an increasing demand for high-resolution simula-
tions that require extremely accurate solutions. Our research focuses on these two fronts:
developing innovative algorithms that take advantage of recent advances in hardware and
also propose new results in the area of error analysis for HPC applications so that reliable
information can be provided regarding the numerical quality of the computed solution.

This document is the manuscript of “Habilitation à Diriger des Recherches” (HDR)
defended by Marc Baboulin at University Paris-Sud. It describes the research accom-
plished by Marc Baboulin over the recent years mainly in the area of parallel algorithms
for numerical linear algebra solvers, which are at the heart of many scientific computing
applications. These algorithms and software aim to be applied to large linear systems
or large linear least squares problems arising in engineering applications and to be im-
plemented on current heterogeneous parallel computers. In this work, our goal is to be
able to solve challenging problems coming from scientific and real industrial applications
but with the constant motivation of making these new functionalities available in open
source scientific libraries. In this manuscript, we will develop three main ideas that have
motivated our research during the recent years.

The first one is related to designing algorithms that fully exploit the inherent het-
erogeneity of current parallel systems. Indeed heterogeneous computing using ac-
celerated manycore systems is becoming a de facto standard in HPC, as observed in the
latest trends from the Top 500 list1. The targetted architectures in our research are mul-
ticore systems possibly accelerated by GPUs. A first issue in developing algorithms for
such heterogeneous systems is related to the way we split the work between the multicore
and the GPU with the objective of getting the best from each computational unit. For
instance we would preferably execute small and nonparallelizable tasks on CPU while the
large and parallelizable tasks would be executed by the GPU. A major concern is also

1http://www.top500.org/

1

to reduce or mask the (slow) communication speed inside or between these architectural
components and to properly schedule the execution of the algorithm. Indeed, a major
concern for the developers of numerical algorithms comes from the exponentially growing
gap between communication and computation efficiency. Performance can also be sig-
nificantly improved by using mixed precision algorithms that achieve a given accuracy
outcome with lower precision computations for the most expensive tasks. This technique
has the advantage of improving runtime and requiring lower data movement (note that
it also reduces energy consumption [64]). Our research on heterogeneous computing has
been mainly applied to dense factorizations in linear algebra.

The second idea that we develop in this document concerns the use of statistical
techniques to accelerate dense linear algebra solvers. Randomized algorithms are
becoming very attractive in HPC due to the significant acceleration they can provide for
large size simulations. Recent advances in the field include for instance random sampling
algorithms [7], low-rank matrix approximation [73] or general matrix decompositions [56].
Our research in this area concerns the solution of linear systems and the assesment of
numerical quality via statistical condition estimates. The randomized algorithms that we
recently developed have the advantage of reducing the amount of communication in dense
factorizations by removing the expensive phase of pivoting and to reduce significantly
the number of arithmetic operations in estimating condition numbers. The randomized
solvers are being progressively integrated into standard linear algebra libraries and take
advantage of current multicore+GPU architectures.

The third idea concerns the numerical quality in HPC applications and more
specifically linear algebra calculations. It is essential, when developing new solvers, to
propose also, preferably in the same libraries, numerical tools that assess the quality of the
computed solution. Of course, this should be obtained at a reasonable cost and ideally the
by-products of the solution process should be reused for the numerical verification phase.
Numerical quality in scientific computing is a wide research area that proposes various
approaches (see e.g. [18, 68, 70, 71, 87]). In our research we focus developing methods
and tools around the concept of problem conditioning. In a preliminary work we derived
analytical formulas for the quantities of interest. We specifically chosen the overdetermined
linear least squares problem (linear systems being a special case of the latter). Here
again, we wanted to investigate statistical methods to accelerate computation. Using our
theoretical work, we developed very recently routines for public domain libraries LAPACK
and MAGMA 2

This HDR manuscript is structured as follows. In Chapter 1 we explain how we
can exploit specificities of current heterogeneous many-core architectures to design faster
algorithms in the context of linear algebra factorizations. In Chapter 2 we describe a class
of innovative algorithms based on randomization that enable us to avoid pivoting and then
to minimize communication in linear algebra solvers. In Chapter 3 we present numerical
tools to assess quality of solutions obtained for HPC applications. Finally, we give some
conclusions and research perspectives for the coming years.

2Matrix Algebra on GPU and Multicore Architectures, http://icl.cs.utk.edu/magma/

2

Chapter 1

Taking advantage of parallel
multicore-GPU architectures

1.1 Introduction to heterogeneous computing

Graphics Processing Units (GPU), originally designed for graphics applications, have sub-
stantially evolved over the years to include more functionality and programmability turn-
ing them into General Purpose GPUs (GPGPUs). Their impressive bandwidth combined
with their floating-point performance has enabled and motivated their use in applica-
tions well beyond graphics. The latest trends show that they are continuously gaining
ground in High-Performance Computing (HPC). For instance, we observe that systems
using accelerators/co-processors represent 57 systems in the June 2012 release of the Top
500 list1 (vs 39 systems 6 months ago). Also 3 systems accelerated with NVIDIA Fermi
GPUs are among the 10 fastest supercomputers.

The current generation of GPUs Fermi can achieve more than 500 Gflop/s of IEEE
standard double-precision floating-point arithmetic and the upcoming Kepler GK110 al-
ready announces 1 Tflop/s of double precision throughput with more than 80% DGEMM
efficiency (vs 60-65% on the prior Fermi architecture). GPUs also have a programming
model (see e.g. [76]) that does not require software developers to know about graphics in
order to use GPUs for general purpose computing. These features have cemented even
further the important role of GPUs in todays HPC. Even power consumption that was
pointed out in a recent past as a major drawback of graphics devices is also significantly
improving with for instance a performance per watt for Kepler which is 3 times that of
Fermi. Looking again at the Top 500 list, it is also interesting to observe that 2 GPU-
accelerated systems are among the 6 most energy efficient supercomputers.

As a result GPUs have moved “closer” to CPUs in terms of functionality and pro-
grammability. At the same time, CPUs have also acquired functionalities similar to that
of GPUs (see e.g. Intel SSE2 or PowerPC AltiVec). Currently, major chip manufacturers
are developing next-generation of microprocessors that integrate multicore CPU and GPU
components (AMD Fusion or Intel MIC). These trends make it more evident that next
generation of supercomputers will be hybrid and will rely on the integration (in varying
proportions) of homogeneous multicore and GPU type of components.

1http://www.top500.org/

3

Due to the high ratio of floating-point calculations to data required, many Dense Linear
Algebra (DLA) algorithms have been of very high performance (e.g. close to the machine
peak) on standard CPU architectures. Older generation of GPUs did not have memory
hierarchy and their performance exclusively relied on high bandwidth. But this lack of
acceleration has recently changed due to a combination of factors. First, since 2008 GPUs
have clearly outperformed standard CPUs in single precision but also in double precision
arithmetics [98]. Second, GPUs have significantly outpaced CPUs in bandwidth (about
an order of magnitude higher than current multi-socket multicore systems). Finally, by
having memory hierarchy, GPUs can be programmed for memory reuse and hence not rely
exclusively on high bandwidth in order to achieve a high percentage of their theoretical
performance peak. These new architectural trends result in an increase of parallelism and
heterogeneity as well as ever increasing data-communication costs. This has motivated
our research to develop efficient linear algebra algorithms for hybrid architectures in order
to integrate them into public domain libraries. The basic ideas for developing efficient
algorithms and software have been initially presented in [11, 14] and then developed in
more details in the framework of the MAGMA project [75, 94, 95]. MAGMA, similarly to
LAPACK [2] and ScaLAPACK [21], is being build as a community effort, incorporating
the newest developments in hybrid algorithms and scheduling, and aiming at minimizing
synchronizations and communication in these algorithms. The goal of these efforts is to
redesign the DLA algorithms in LAPACK to fully exploit the power of current heteroge-
neous systems of multi/manycore CPUs and accelerators, and deliver the fastest possible
time to an accurate solution. Indeed, the algorithms included so far in MAGMA 1.1
manage to overcome bottlenecks associated with just multicore or GPUs, to significantly
outperform corresponding packages for any of these homogeneous components taken sep-
arately. MAGMA’s one-sided factorizations for example (and linear solvers) on a single
Fermi GPU (and a basic CPU host) can outperform state-of-the-art CPU libraries on
high-end multi-socket, multicore nodes (e.g., using up to 48 modern cores). In the con-
text of hybrid algorithms, there have been also a number of new developments related to
minimizing the communication in one-sided factorizations. For instance communication-
avoiding techniques have been recently applied in [10] to the solution of general dense
linear systems via LU factorization or in [3] to the QR factorization. Such improvements
have become essential due to the increasing gap between communication and computation
costs.

In designing DLA algorithms for multicore or GPU, the requirements for efficient ex-
ecution are high parallelism and reduced communication to mask slow memory speeds.
But when we combine CPU and GPU architectures, algorithms should also be properly
hybridized. This means that the work load should be balanced throughout the execution,
and the work scheduling/mapping should ensure matching of architectural strengths to
algorithmic requirements. In Section 1.2 we explain how linear algebra solvers can be
implemented in order to reduce communication and exploit the architectural strengths
of each component. We present specific examples based on the Cholesky and LU fac-
torizations, which further illustrate the concept of hybrid multicore+GPU computing for
DLA.

Another observation is that on modern architectures, the performance of 32-bit op-
erations is often at least twice as fast as the performance of 64-bit operations (due to
the faster speed of 32-bit floating point arithmetic but also to the fact that the amount

4

of bytes moved through the memory system is halved). This is the case for multicore
processors but also for technologies such as Field Programmable Gate Arrays (FPGA)
and GPUs. Then by using a combination of 32-bit and 64-bit floating point arithmetic,
the performance of many dense and sparse linear algebra algorithms can be significantly
enhanced while maintaining the 64-bit accuracy of the resulting solution. The relevance
of this method for modern architectures was shown in [72] and then more details and
applications were given in [9]. In Section 1.3 we present this methodology in the context
of solving a system of linear equations and we provide performance results on current
multicore+GPU architectures.

1.2 Hybrid multicore-GPU solvers

1.2.1 Designing hybrid algorithms in dense linear algebra factorizations

We present in this section the underlying method for combining multicore and GPU in
DLA algorithms. It consists of representing algorithms as a collection of BLAS-based
tasks [1] that are executed over the multicore and the GPU. This abstracts us from the
specificities in programming a GPU. This approach relies on high performance BLAS
implementations, which are available for current multicore and GPU systems. The three
main ideas that define our approach are the following:

1. Use BLAS level parallelism, where the matrix resides on the GPU, and the CPU is
running, for example, LAPACK style code represented as a sequence of CUBLAS
kernels,

2. Offload to the CPU small kernels that are inefficient for the GPU,

3. Use asynchronicity between CPU and GPU whenever possible in the offload/load
process.

We can illustrate this idea in Figure 1.1 by considering the Cholesky factorization
(in its so called left-looking variant [79]). The matrix to be factored is allocated on the
GPU memory and the code is as in LAPACK with BLAS calls replaced by CUBLAS,
which represents the first idea in the list above. Since steps 2 and 3 of the algorithm
are independent, and the Cholesky factorization of matrix B (notations as in Figure 1.1)
would have been inefficient for the GPU (small problem of size 128 x 128 for example,
i.e. cannot have enough parallelism to utilize all the cores of the GPU), B is offloaded and
factorized on the CPU, which illustrates the second idea. Finally, steps 2 and 3 of the
algorithm are executed in parallel as calls to CUDA are asynchronous, and SPOTRF is
executed without waiting for the completion of cublasSgemm, which illustrates the third
idea. In addition to overlapping just the computation, for cards that support it, sending B
to the CPU and moving the result back could be overlapped with the GPU computation
(of cublasSgemm in this case) when asynchronous copy calls are used.

This principle of “hybridization” can be generalized to dense factorization algorithms
for which the block algorithms involve factoring block columns (called panels) using Level-
2 BLAS algorithms from LAPACK-style routines. This panel factorization would then be
performed on the CPU while the trailing matrix updates (Level-3 BLAS) are done on the
GPU. Usually we try to overlap the work on the CPU and the GPU. Ideally, as the CPU is

5

Figure 1.1: Hybridization of left-looking Cholesky factorization.

working on the critical path, we want the CPU never to work by itself. Indeed we achieve
this for certain matrix sizes as shown in Figure 1.2 for the QR factorization (CPU alone
disappears from the graph for matrix size about 6000), the overhead representing here
mostly communication. More details about the task splitting between CPU and GPU will
be given in Section 1.2.2 by considering the example of the widely used LU factorization.

Figure 1.2: Time breakdown for hybrid QR factorization (single precision)
Intel Core2 Q9300 (1 x 4 cores @ 2.50 GHz) - GPU C2050 (448 CUDA cores @ 1.15 GHz).

6

1.2.2 Application to the LU factorization

Let us explain how the principles of hybridization described in Section 1.2.1 can be applied
to the LU factorization (note that the LU algorithm is used in the LINPACK benchmark
for the Top 500 list). We described a hybrid multicore+GPU version of this algorithm
in [94] as it is implemented in the MAGMA library (release 1.1). Current libraries like
LAPACK implement LU factorization using a block algorithm, which factors the input
matrix by iterating over blocks of columns (panels). At each iteration, the LU factorization
of the current panel is computed, and then the trailing submatrix is updated. When using
hybrid architectures the computation can be split as shown in Figure 1.3 that represents
a matrix factored via a right-looking block LU factorization [38, p. 85], where the dark
part has been already factored. The initial matrix has been downloaded to the GPU. We
describe in Algorithm 1.2.1 a current iteration for the factorization of the matrix depicted
in Figure 1.3.

Algorithm 1.2.1 Iteration for LU factorization using MAGMA

1: The current panel (1) is downloaded to the CPU.
2: (1) is factored by the CPU and the result is sent back to the GPU.
3: The GPU updates (2) (next panel).
4: The updated panel (2) is sent back to the CPU to be factored while the GPU updates

the rest of the matrix (3).

The technique consisting of factoring (2) while still updating (3) is often referred to
as look-ahead [69]. In the current implementation of MAGMA, the panel factorization is
performed using Gaussian Elimination with Partial Pivoting (GEPP) but this algorithm is
general enough to be applicable to many forms of LU factorizations, where the distinction
can be made based on the form of pivoting that they employ. Depending on the problem
size n and on the hardware used, MAGMA proposes a default value for the parameter
b (width of the panel). Note that the design of this hybrid LU factorization avoids
communicating by having only panels transferred between CPU and GPU (O(n ∗ b) data
vs O(n ∗ n ∗ b) computation in the updates), enabling also the total overlap of the panel
computation by the updates for n large enough.

However communication can still be reduced by considering another pivoting technique
to factor the panel on the CPU. This technique called tournament pivoting was introduced
in the last years in the context of CALU, a communication-avoiding LU factorization
algorithm [51]. With this strategy, the panel factorization, referred to as TSLU (Tall
Skinny LU), can be efficiently parallelized as follows. The panel is partitioned into Pr
blocks. From each block, a set of local pivots is selected in parallel using GEPP. A
tournament is used on the Pr local sets to select a set of global pivots. These global pivots
are moved to the diagonal positions, and then the LU factorization with no pivoting of
the entire panel is performed. The tournament is implemented as a reduction operation,
with GEPP being the operator used at each step of the reduction. This pivoting strategy
turns out to be very efficient for factoring the panel due to its particular “tall and skinny”
structure.

Whatever the pivoting strategy chosen for factoring the panel, the hybrid LU factoriza-
tion can also be represented as a sequence of DAGs (Directed Acyclic Graphs) as depicted

7

1 2 3

b

Figure 1.3: Block splitting in hybrid LU factorization

in Figure 1.4. We consider that the matrix is initially stored on the GPU. Black tasks
represent the factorization of the panel using multithreaded CALU and the gray tasks
represent the update of the trailing submatrix in the GPU. At each step of the factoriza-
tion, the block corresponding to the panel is transfered to the CPU and factored using
GEPP or CALU. Once the panel is factored, it is sent back to the GPU in order to update
the trailing submatrix. The GPU updates in priority the column block corresponding to
the next panel. Note that, similarly to [94], the data transfer between CPU and GPU is
overlapped by computation.

C
P
U

G
P
U

C
P
U

G
P
U

· · ·

Step 1 Step 2 Step 3

Figure 1.4: Task splitting in hybrid LU factorization.

1.2.3 Numerical experiments on hybrid LU solvers

1.2.3.1 Performance results on single and multi GPUs

In this section we present performance results for the hybrid LU factorization algorithm
described in Section 1.2.2. The GPU device is an NVIDIA Fermi Tesla C2050 with 448
CUDA cores running at 1.15 GHz and 2687 MB memory. The multicore host is a 48 cores
system (4 sockets × 12 cores) Magny-Cours AMD Opteron 6172 (2.1 GHz). The Fermi
GPU used in these experiments achieves single and double precision peak performance of

8

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

G
fl
o
p
/s

Threads

dgetrf
rgetf2
CALU
PRBT

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

G
fl
o
p
/s

Threads

dgetrf
rgetf2
CALU
PRBT

Figure 1.5: Comparison of CPU multi-threaded panel factorizations.
Matrix size = 5120, panel size = 256 (left) - Matrix size = 10240, panel size = 320 (right)

respectively 1030 Gflop/s and 515 Gflop/s. All computations are performed on random
matrices and in double precision arithmetic.

Let us first compare the kernels used on the multicore for factoring the panel. In Fig-
ure 1.5, we compare the performance of the panel factorization for the following routines:

• CALU factorization routine that we modified to develop the hybrid solver called
H-CALU (see [10]) and linked with the sequential version of MKL for the required
BLAS and LAPACK routines.

• MKL implementation of the LAPACK routine dgetrf, used in the MAGMA imple-
mentation of LU for factoring the panel.

• A recursive routine for GEPP rgetf2 (linked with MKL multithreaded BLAS) de-
scribed in [54] and known to give good performance on “tall and skinny” matrices.

• PRBT (solver based on randomization [13]) where the panel is factored using the rou-
tine dgetrf nopiv that performs Gaussian Elimination with No Pivoting (GENP).

This performance is measured by summing the total number of flops executed in factor-
ing successively each panel throughout the factorization and dividing it by the time spent
during these steps. This performance (expressed in Gflop/s) is plotted in Figure 1.5 for the
factorization of two square matrices, each associated with a given panel size (parameter b
defined in Section 1.2.2, corresponding to the number of columns for the panel).

For factoring the panel, we consider different numbers of threads (one CPU core being
used for each thread) varying from 1 to 26. Note that using more than 26 threads does
not provide us with better performance, due to the too-large amount of communication
involved in the panel factorization. The panel size b considered in Figure 1.5 for each
matrix size corresponds to a value empirically tuned in order to provide the best global
factorization time for each matrix when using a hybrid implementation.

The performance of PRBT, based on a GENP routine can be considered here as a
“peak” performance for the panel factorization. We also observe in Figure 1.5(b) that
CALU is faster for a larger ratio rows/columns. Moreover, CALU and PRBT have better

9

scalability properties. This can be explain by the fact that CALU minimizes commu-
nication thanks to its pivoting strategy and PRBT does not pivot at all. The plateau
observed for each curve after a certain number of threads corresponds to cases where the
amount of communication becomes too large and cannot be overlapped by computation.
For n = 5120 , CALU, dgetrf and rgetf2 give similar performance. However, when the
matrix size increases and then the panel becomes more “tall and skinny”, CALU outper-
forms the two other solvers and achieves a reasonable fraction of the PRBT rate. This
good behavior of CALU for factoring the panel was already mentioned in [37].

We compare in Figure 1.6 three hybrid LU factorization routines implemented as de-
scribed in Algorithm 1.2.1. The first one (magma dgetrf) is implemented in MAGMA
1.1, where the panel is factored using the MKL routine dgetrf that performs GEPP. For
the second routine (H-CALU), the panel is factored using the CALU routine mentioned
in Section 1.2.2. These two routines are compared with the PRBT solver that prior to
factorization performs randomization referred to as Partial Random Butterfly Transfor-
mation (PRBT) [13]. Following randomization, Gaussian elimination with no pivoting is
applied which is implemented as a very efficient fully BLAS 3 algorithm. Then we expect
that the Gflop/s performance of the PRBT solver will provide us with an upper bound for
other LU solvers on hybrid CPU/GPU architectures. More details on this randomization
technique will be given in Chapter 2.

 0

 50

 100

 150

 200

 250

 300

1024 3072 5120 7168 9216 11264 13312 15360 17408

G
fl
o

p
/s

Matrix size

magma_dgetrf
H-CALU

PRBT

Figure 1.6: Performance for hybrid LU factorization AMD + Tesla C2050, 16 threads.

As expected, PRBT outperforms the other routines because it does not pivot and
the randomization time is negligible. We can also observe that in the range 1024-5120, H-
CALU gives similar performance as MAGMA but it is slightly faster for matrix sizes larger
than 5120. This trend can be explained by the fact that, for matrix sizes smaller than 5120,
the panels are not enough “tall and skinny” to take advantage of the CALU algorithm.
We notice that the difference of performance observed for the panel in Figure 1.5 has a
moderate impact on the whole factorization since the update phase performed on the GPU
represents the bulk of the computation. We observe that asymptotically, the performance
of the three routines should be close because communication become negligible compared
to the O(n3) computations for large dimensions. Finally we point out that, if we use only
multicore machines without GPU, then other solvers can be considered (see e.g. recursive

10

tile version in [39]).

Following recent work on one-sided factorization algorithms [102], we developed re-
cently a version of PRBT that uses multiple GPUs. The matrix to factorize is distributed
on the GPUs using a 1-D block-cyclic column layout [21, p. 58]). At each step the current
panel is downloaded from the GPU that owns it to the CPU to be factored. When the
CPU finishes the panel factorization, it sends it to all GPUs. This panel is stored in a
temporary space allocated on each GPU (except for the GPU that owns this panel from
the data distribution) and the GPUs update their trailing submatrix. The GPU that owns
the next panel, updates in priority the part of the trailing submatrix that corresponds to
the next panel and sends it to the CPU. Using this algorithm, we can compare in Fig-
ure 1.7 the performance of the LU with partial pivoting and no pivoting. It shows that
using multiple GPUs is interesting only when we consider large systems since for smaller
sizes, the communication cost between CPU and GPUs is significant. Note also that the
no-pivoting factorization is much more scalable than the partial pivoting factorization.
Indeed, the latter does not take full advantage of the multiple GPUs since the pivoting
is performed on the CPU. This justifies again the interest of using techniques to avoid
pivoting on these architectures. This aspect will be developed in Chapter 2.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

1 2 3 4

S
p

e
e

d
u

p

Number of GPUs

MultiGPU LU factorization

Size = 5120/

Size = 10240/

Size = 15360/

Size = 20480/

PRBT

Partial pivoting

Figure 1.7: Performance for multiGPU LU factorization.

1.2.3.2 Accuracy of hybrid LU implementations

The following experiments on accuracy were achieved on the machine described at the
beginning of Section 1.2.3.1. First we study the backward error obtained for the linear
system solution computed with the solvers LU MAGMA (based on the factorization routine
magma dgetrf), H-CALU and PRBT, using random matrices. The quantity plotted in
Figure 1.8 corresponds to the componentwise backward error given in [2, p. 78] and
expressed by

ω = max
i

|Ax− b|i
(|A| · |x|+ |b|)i

,

where x is the computed solution. We observe that the backward errors are very similar
for the three hybrid solvers.

11

 1e-15

 1e-14

 1e-13

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240 11264 12288 13312 14336 15360 16384 17408

B
a

c
k
w

a
rd

 e
rr

o
r

Matrix size

magma_dgetrs
H-CALU

PRBT

Figure 1.8: Comparison of componentwise backward error

Now we present additional experiments using LAPACK test cases given in [22]. Ta-
ble 1.1 lists the 11 matrices used in our experiments (size 512, all in double precision). In
this table, ε denotes the machine precision and κ is the infinity-norm condition number
of the matrix. We report in Table 1.2 the componentwise backward error obtained for
the three hybrid solvers (LU MAGMA, H-CALU and PRBT) and the no pivoting case.
Iterative refinement (in the working precision) is added if necessary using the LAPACK
routine dgerfs on the multicore host. The iterative refinement is based on the stopping
criterion given in [89] (ω ≤ (n + 1)ε), with a maximum of 5 iterations. Matrices 5 to 7
are singular and have at least one row and column equal to zero. These are used in [22] to
test the error return codes. For the ill-conditioned matrix 9, the backward error for PRBT
is slightly less accurate than the other solvers. Matrix 10 is scaled to near underflow and
the three solvers give similar results but less acurate than for other matrices. For all the
other matrices, the three solvers give the same accuracy. Tests on accuracy for specific
matrix collections can be found in [13] and [51] respectively for PRBT and CALU.

Table 1.1: Test matrices

1 Diagonal 7 Last n/2 columns zero

2 Upper triangular 8 Random, κ =
√

0.1/ε
3 Lower triangular 9 Random, κ = 0.1/ε
4 Random, κ = 2 10 Scaled near underflow
5 First column zero 11 Scaled near overflow
6 Last column zero

1.3 Mixed precision algorithms

The interest of mixed precision algorithms comes from the observation that, in many cases,
a single precision solution of a problem can be refined to the point where double precision

12

Table 1.2: Componentwise Backward Error

Matrix MAGMA LU H-CALU PRBT No pivoting
Type (magma dgetrf)

1 0.0 0.0 1.42e-16 0.0
2 1.32e-16 1.32e-16 4.02e-16 6.19e-16
3 1.85e-16 1.85e-16 2.46e-16 2.14e-16
4 2.16e-16 2.76e-16 2.93e-16 1.13e-11
5 - - - -
6 - - - -
7 - - - -
8 2.10e-16 3.76e-16 2.64e-16 2.94e-12
9 2.70e-16 6.37e-16 1.16e-13 1.41e-13

10 7.60e-14 7.40e-14 4.01e-14 2.42e-11
11 2.27e-16 2.11e-16 2.41e-16 2.90e-11

accuracy is achieved. The refinement can be accomplished, for instance, by means of the
Newton’s algorithm [104] which computes the zero of a function f(x) according to the
iterative formula

xn+1 = xn −
f(xn)

f ′(xn)
. (1.1)

In general, we would compute a starting point and f ′(x) in single precision arithmetic
and the refinement process will be computed in double precision arithmetic.

If the refinement process is cheap enough compared to the initial computation of the
solution then double precision accuracy can be achieved nearly at the same speed as the
single precision accuracy. In the resulting method, the bulk of the operations is performed
in 32-bit arithmetic, then we postprocess the 32-bit solution by refining it into a solution
that is 64-bit accurate. This approach can be applied to linear solvers, either direct or
iterative and for dense or sparse matrices. If we consider the example of the solution of
linear systems, then due to round-off errors, the computed solution x carries a numerical
error amplified by the condition number of the coefficient matrix A . In order to improve
the computed solution, we can apply an iterative process which produces a correction to
the computed solution at each iteration, which then yields the method that is commonly
known as the iterative refinement algorithm [5, 89]. As mentioned in [34], the non-linearity
of the round-off errors makes the iterative refinement process equivalent to the Newton’s
method applied to the function f(x) = b − Ax . Provided that the system is not too ill-
conditioned, the algorithm produces a solution correct to the working precision. Iterative
refinement in single/double precision is a fairly well understood concept and was analyzed
by [74, 91, 101]. There are also techniques called extra-precise iterative refinements that
can be used to compute error bounds for linear systems [32] or overdetermined least squares
problems [33].

The method of iterative refinement can be modified to use a mixed precision approach
for solving linear systems. If we consider for instance the solution of general square
systems, then the factorization PA = LU and the solution of the triangular systems Ly =

13

Pb and Ux = y are computed using single precision arithmetic. The residual calculation
and the update of the solution are computed using double precision arithmetic applied to
the original double precision coefficients (see Algorithm 1.3.1). The most computationally
expensive operation, the factorization of the coefficient matrix A , is performed using
single precision arithmetic and takes advantage of its higher speed. The only operations
that must be executed in double precision are the residual calculation and the update of
the solution (they are denoted with an εd in Algorithm 1.3.1). We observe that the only
operation with computational complexity of O(n3) is handled in single precision, while all
operations performed in double precision are of at most O(n2) complexity. The coefficient
matrix A is converted to single precision for the LU factorization and the resulting factors
are stored in single precision while the initial coefficient matrix A needs to be kept in
memory. Therefore, one drawback of the following approach is that the it uses 50% more
memory than the standard double precision algorithm.

Then the method given in Algorithm 1.3.1 accelerates the solution of linear systems
(either sparse or dense) if:

1. single precision computation is significantly faster than double precision computation
(which is the case for current multicore and GPU architectures).

2. the iterative refinement procedure converges in a small number of steps.

3. the cost of each iteration is small compared to the cost of the system factorization.
If the cost of each iteration is too high, then a low number of iterations will result
in a performance loss with respect to the full double precision solver. In the sparse
case, for a fixed matrix size, both the cost of the system factorization and the cost
of the iterative refinement step may substantially vary depending on the number of
non-zeroes and on the matrix sparsity structure. In the dense case, results are more
predictable.

Note that the choice of the stopping criterion in the iterative refinement process is
critical. Formulas for the error computed at each step of Algorithm 1.3.1 can be obtained
for instance in [32, 77]. The componentwise backward error used for instance [2, p. 78] is
expressed by

ω = max
i

|Ax̂− b|i
(|A| · |x̂|+ |b|)i

,

where x̂ is the computed solution. Then the stopping criterion can be, as suggested
in [89], (ω ≤ (n+ 1)εd).

Let us apply this method to the solution of general dense linear systems, using the
hybrid LU factorization. The LU factorization in single precision is performed using the
routine magma dgetrf detailed in Section 1.2.2. The iterations are performed on the GPU
and the CPU is used only in the factorization step for the panels. We present in Fig-
ure 1.9 performance results for a hybrid mixed precision iterative refinement solver for
dense matrices and we compare them with the performance of single and double precision
solvers. These experiments were carried out on the multicore+GPU system described in
Section 1.2.3.1 (Magny-Cours+Fermi). We use random matrices and the iterative refine-
ment converged in 3 iterations

These results show that the mixed precision iterative refinement method can run very
close to the speed of the full single precision solver while delivering the same accuracy

14

Algorithm 1.3.1 Mixed precision iterative refinement using LU factorization

1: LU ← PA (εs)
2: solve Ly = Pb (εs)
3: solve Ux0 = y (εs)
4: do k = 1, 2, ...
5: rk ← b−Axk−1 (εd)
6: solve Uzk = y (εs)
7: xk ← xk−1 + zk (εd)
8: check convergence
9: done

as the full double precision one. For small problem sizes the cost of even a few iterative
refinement iterations is high compared to the cost of the factorization and thus the mixed
precision iterative solver is less efficient than the double precision one.

Figure 1.9: Performance for mixed precision LU-based solver on Fermi (C2050).

15

16

Chapter 2

Accelerating linear system
solutions with randomized
algorithms

2.1 Introduction to randomization for linear systems

The last several years saw the development of randomized algorithms in high-performance
computing applications. This increased interest is motivated by the fact that the result-
ing algorithms are able to outperform deterministic methods while still providing very
accurate results (see e.g. random sampling algorithms that can be applied to least squares
solutions or low-rank matrix approximation [73]). In addition to being easier to analyze,
the main advantage of such algorithms is that they can lead to much faster solution by
performing a smaller number of floating-point operations (e.g. [7]), or by involving less
communication (e.g. [13]). As a result, they potentially allow domain scientists to address
larger simulations (which also contributes to get more accurate results). Other applications
of statistical techniques to accelerate linear algebra calculations can be found for instance
for solving linear systems using Monte Carlo methods [36], or for computing condition
estimates [4, 66] (this application will be presented in Section 3.2.2 in the next chapter).
Recently, randomization has also been applied to more general matrix decompositions [56].

However, to be of full interest for real-world applications, randomized algorithms must
be able to exploit the computing capabilities of current parallel machines, which can
commonly achieve performance of more than one Tflop/s per node. Since randomized
algorithms are supposed to be useful for very large problems, the main challenge for
them is to exploit efficiently computing units like multicore systems or GPUs and their
associated memories. Another important requirement is to be able to schedule efficiently
such algorithms on these architectures.

Let us develop in this chapter how randomized algorithms can be useful to enhance
linear system solutions. In such solvers, a classical way to ensure stability is to use pivoting.
This technique aims at preventing divisions by zero or by too-small quantities in the
process of Gaussian Elimination (GE). In the case of general linear systems, we solve a
linear system Ax = b using a factorization

PA = LU (2.1)

17

where P is a permutation matrix, L is unit lower triangular and U is upper triangular.
The solution x can be computed by successively solving Ly = Pb and Ux = y . The
Gaussian Elimination with Partial Pivoting (GEPP) procedure permutes rows of the input
matrix so that large nonzero matrix elements are moved to the diagonal to be used as
“pivot”. There is no floating-point operation in pivoting but it involves communication
due to irregular data movements (O(n2) comparisons for the partial pivoting, where n is
the matrix size). GEPP turns out to be very stable in practice and has been implemented
in standard linear algebra libraries (e.g. LAPACK and ScaLAPACK).

With the advent of architectures such as multicore processors or Graphics Processing
Units (GPU), the growing gap between communication and computation efficiency made
the communication overhead due to pivoting more critical. Moreover, in the LAPACK
implementation of GEPP, rows are swapped at once during pivoting, which inhibits the
exploitation of more asynchronicity between block operations. Several pivoting techniques,
potentially less stable than partial or complete pivoting, have been used to minimize the
communication like pairwise pivoting [90] or threshold pivoting [40] (see [96] for a stability
analysis of these pivoting techniques). In particular pairwise pivoting has been imple-
mented in algorithms for multicore machines [27] but this generates a significant overhead
since the rows are swapped in pairs of blocks. We also mention, for multithreaded archi-
tectures, a pivoting technique called incremental pivoting in [84] based on principles used
for out-of-core solvers. Another pivoting technique has been proposed in [51] that mini-
mizes the number of messages exchanged during the factorization, leading to a new class
of algorithms often referred to as “communication-avoiding” algorithms. More specifically
for GPUs, the pivoting overhead was reduced by using an innovative data structure [99].

To illustrate the cost of pivoting, we plot in Figure 2.1 the percentage of time due
to pivoting in LU factorization (MAGMA implementation) for several sizes of random
matrices on a current hybrid CPU/GPU machine (in double precision arithmetic). We
observe that pivoting can represent more than 40% of the global factorization time for
small matrices and although the overhead decreases with the size of the matrix, it still
represents 17% for a matrix of size 10, 000 .

For symmetric indefinite systems, we use in general diagonal pivoting methods [25]
where a block-LDL T factorization is obtained such that

PAP T = LDLT (2.2)

where P is a permutation matrix, L is unit lower triangular and D is block-diagonal,
with blocks of size 1×1 or 2×2 ; all matrices are of size n×n . If no pivoting is applied,
i.e. P = I , D becomes diagonal. The solution x can be computed by successively solving
the triangular or block-diagonal systems Lz = Pb , Dw = z , LT y = w , and ultimately
we have x = P T y . This pivoting method turns out to be very stable in practice and is
implemented in current serial dense linear algebra libraries (e.g. LAPACK). It requires
between O(n2) and O(n3) comparisons.

One of the differences between symmetric and nonsymmetric pivoting is that, indepen-
dently from the pivoting technique used, columns and rows must be interchanged in the
symmetric case while only rows must be swapped in the nonsymmetric case, as illustrated
in Figure 2.2. This in itself makes pivoting more expensive in terms of data movement
for symmetric matrices. Interchanging rows and columns also compromises data local-
ity since noncontiguous data blocks must be moved however data are stored. There is

18

Figure 2.1: Cost of pivoting in LU factorization (CPU 1 × Quad-Core Intel Core2 Pro-
cessor Q9300 @ 2.50 GHz GPU C2050 — 14 Multiprocessors (× 32 CUDA cores) @ 1.15
GHz).

also an increase of data dependencies, which inhibits parallelism, both in interchanging
columns/rows and in searching for pivots. For nonsymmetric matrices, pivots are most
commonly searched in a single column (partial pivoting) while for symmetric matrices the
search may be extended to the diagonal and further. The fact that pivoting remains a
bottleneck for linear system solutions is a motivation to study an alternative to pivoting
thanks to randomization.

1

2

3

Figure 2.2: Symmetric pivoting in LDLT factorization.

While many implementations of the LDL T factorization have been proposed for sparse
solvers on distributed and shared memory architectures [35, 47, 57, 88], there is no par-

19

allel implementation in the current dense linear algebra libraries ScaLAPACK [21],
PLASMA [78], MAGMA [94], and FLAME [53]. These libraries have implemented so-
lutions for the common Cholesky, LU and QR factorizations but none of them introduced
a solution for indefinite symmetric matrices in spite of the gain of flops it could provide
for these cases. The main reason for this comes from the algorithms used for pivoting
in LDL T , which are difficult to parallelize efficiently. To our knowledge, the only re-
search in the subject has been done by Strazdins [92] and the procedure is available in
the OpenMP version of MKL [62]. At the same time, these types of linear systems are
commonly encountered in optimization problems coming from physics of structures, acous-
tics, and electromagnetism, among others. Symmetric indefinite systems also result from
linear least squares problems when they are solved via the augmented system method [20,
p. 77]. This has motivated our research [8, 19] for proposing a parallel solver based on
randomization for dense symmetric indefinite systems, after having applied randomization
techniques for general dense systems [13].

We describe in this chapter an approach based on randomization where the original
matrix A is transformed into a matrix that would be sufficiently “random” so that, with
a probability close to 1, pivoting is not needed. We illustrate it by considering the case of
symmetric indefinite systems.

2.2 How to avoid pivoting in linear systems using random-
ization

2.2.1 Symmetric Random Butterfly Transformation (SRBT)

Let us recall here the main definitions and results related to the randomization approach
that is used for dense symmetric indefinite systems. The randomization of the matrix is
based on a technique described in [82], revisited in [13] for general systems and applied
in [19] for symmetric indefinite systems. We consider a symmetric system Ax = b that
can be transformed as

Ax = b ≡ UTAU︸ ︷︷ ︸
Ar

U−1x︸ ︷︷ ︸
y

= UT b︸︷︷︸
c

. (2.3)

Then the procedure to solve Ax = b via randomization is the following:

1. Compute Ar = UTAU , with U a random matrix,

2. Factorize Ar = LDLT (without pivoting),

3. Solve Ary = UT b and compute x = Uy .

The random matrix U is chosen among a particular class of matrices called recursive
butterfly matrices and the resulting transformation is referred to as Symmetric Ran-
dom Butterfly Transformation (SRBT). To be of interest, this randomization should
be cheap (O(n2) operations and efficiently implemented) and the LDL T with no piv-
oting should be fast (close to a “Cholesky speed”). Another requirement for this ran-
domized solver is to provide us with an accuracy similar to the LDL T Bunch-Kaufman
algorithm [24] (implemented for instance in LAPACK).

20

A butterfly matrix is defined as any n -by- n matrix of the form:

B =
1√
2

(
R S
R −S

)
(2.4)

where n ≥ 2 and R and S are random diagonal and nonsingular n/2 -by- n/2 matrices.
A recursive butterfly matrix U of size n and depth d is a product of the form

U = Ud × · · · × U1, (2.5)

where Uk (1 ≤ k ≤ d) is a block diagonal matrix expressed as

Uk =

B1

. . .

B2k−1

 (2.6)

each Bi being a butterfly matrix of size n/2k−1 . In particular U1 is a butterfly as defined
in Formula (2.4). Note that this definition requires that n is a multiple of 2d which can
always be obtained by “augmenting” the matrix A with additional 1’s on the diagonal.

We generate the random diagonal values used in the butterflies as eρ/10 , where ρ is
randomly chosen in [−1

2 ,
1
2] . This choice is suggested and justified in [82] by the fact that

the determinant of a butterfly has an expected value 1. Then the random values ri used
in generating butterflies are such that

e−1/20 ≤ ri ≤ e1/20.

Using these random values, it is shown in [8] that the 2-norm condition number of the
randomized matrix Ar verifies

cond2(Ar) ≤ 1.2214dcond2(A) , (2.7)

and thus, for small values of d , the 2-norm condition number of the initial matrix A will
be kept almost unchanged by the randomization.

We recall also that the LDL T algorithm without pivoting is potentially unstable [60,
p. 214], due to a possibly large growth factor. We can find in [82] explanations about how
recursive butterfly transformations modify the growth factor of the original matrix A . To
ameliorate this potential instability, we systematically add in our method a few steps of
iterative refinement in the working precision as indicated in [60, p. 232].

We also point out that SRBT requires a limited extra storage since a butterfly matrix
and a recursive butterfly matrix can be stored in a packed storage using a vector and a
matrix, respectively.

2.2.2 Efficient SRBT algorithm for symmetric matrices

For simplicity, n (order of matrices U and A) is supposed to be a multiple of 2d here-
after (if not the system is augmented with additional 1’s on the diagonal). Following
Equation (2.3) two kernels are required in order to transform the system Ax = b :

Ar = UTAU (2.8)

c = UT b (2.9)

21

After solving Ary = c , x is obtained by

x = Uy (2.10)

Equations (2.9) and (2.10) can be taken as particular cases of Equation (2.8), where the U
matrix on the right side of A is an identity matrix. This means that the data dependencies
described in what follows are similar but simpler for Equations (2.9) and (2.10). Since the
implementation uses the same principle for all three operations, only UTAU is detailed.

Using the definition of the recursive matrix U given in Equation (2.5), the randomized
matrix Ar can be expanded as

Ar = UT1 × UT2 × · · · × UTd ×A× Ud × · · · × U2 × U1.

Note that Ui is a sparse matrix, with sparsity pattern as shown in Figure 2.3, and that
the matrix product of Ui results in a different sparsity pattern, which depends on the
number of levels of recursion. To avoid storing the product of Ui and to maintain the
symmetry, the computation can be performed by recursively computing

A(i−1)
r = UTi A

(i)Ui, (2.11)

where A(d) = A and Ar = A
(0)
r .

(a) U1 (b) U2 (c) U2 × U1

Figure 2.3: Sparsity pattern of matrix U .

It can be observed that, for each level, UTi A
(i)Ui can be written as blocks given by

BT
i AijBj . For instance, for the second level

UT2 A
(2)U2 =

[
BT

1

BT
2

] [
A11 A12

A21 A22

] [
B1

B2

]

=

[
BT

1 A11B1 BT
1 A12B2

BT
2 A21B1 BT

2 A22B2

]

Hence, the so-called core kernel of a random butterfly transformation is given by

BT
i AijBj (2.12)

where Aij is a block of A and B∗ is a random butterfly matrix, both of size m ×m .
The block Aij can either be symmetric (diagonal block, i.e. i = j) or non-symmetric
(off-diagonal block, i.e. i 6= j).

22

Recalling that B has a well defined structure

B =

[
R S
R −S

]
and BT =

[
R R
S −S

]

where R and S are diagonal matrices, and given that Aij is divided into four submatrices
of same size, such as

Aij =

[
TL TR
BL BR

]

and that

WTL = (TL+BL) + (TR+BR),

WBL = (TL−BL) + (TR−BR),

WTR = (TL+BL)− (TR+BR),

WBR = (TL−BL)− (TR−BR).

Equation (2.12) can be written as

BT
i AijBj =

[
R ·WTL ·R R ·WTR · S
S ·WBL ·R S ·WBR · S

]
.

Note that only the signs differ in calculating each W∗ . Hence, all four cases can be
generalized as

W = (TL ◦BL) ◦ (TR ◦BR), (2.13)

where the operator ◦ denotes an addition or a substraction. Equation (2.13) shows that
each matrix W∗ depends on all four submatrices of Aij . More specifically, any given
element of W depends on four elements of A . Therefore, the data dependencies among
elements could be depicted as:

1 2 3 1 2 3
2 4 5 2 4 5
3 5 6 3 5 6

1 2 3 1 2 3
2 4 5 2 4 5
3 5 6 3 5 6

︸ ︷︷ ︸
Symmetric

1 4 7 1 4 7
2 5 8 2 5 8
3 6 9 3 6 9

1 4 7 1 4 7
2 5 8 2 5 8
3 6 9 3 6 9

︸ ︷︷ ︸
General

where same numbers means these elements depend on each other. For the symmetric case,
the strictly upper triangular part is not calculated, and for this work, not stored either.
Hence, elements above the diagonal (i < j) must be computed as their transpose, i.e. Aij
is read and written as Aji .

This method can be extended to blocks, or tiles to comply with the tiled LDL T fac-
torization that will be presented in Section 2.2.3. If each number above is taken as a tile
(or block), the data dependencies can be sketched as in Figure 2.4.

23

(a) Symmetric kernel (b) General kernel

Figure 2.4: SRBT core kernel (BT
i AijBj), data dependencies among tiles of Aij , given

by matching colors.

Regarding the computational cost of randomization, it depends on the order of the
matrix to be transformed, n , and on the number of recursion levels, d . Using Equa-
tion (2.11), for each recursion level i we compute a matrix of the form

BT
1 A

(i)
11B1 · · · BT

1 A
(i)T
p1 Bp

...
. . .

...

BT
p A

(i)
p1B1 · · · BT

p A
(i)
ppBp

 , (2.14)

where p = 2i−1 . Each block-matrix expressed in (2.14) requires p symmetric kernels and
p(p− 1)/2 general (nonsymmetric) kernels operating on matrices of size n/p . Therefore,
the number of operations involved in randomizing A by an SRBT of depth d is

C(n, d) '
d∑

i=1

(
p · 2(n/p)2 + p(p− 1)/2 · 4(n/p)2

)

= 2dn2

We will consider a number of recursions d such that d < log2 n � n . Numerical tests,
performed on a collection of matrices from the Higham’s Matrix Computation Toolbox [60],
will described in Section 2.3.1. They show that, in practice, d = 2 enables us to achieve
satisfying accuracy. Similarly to the product of a recursive butterfly by a matrix, the
product of a recursive butterfly by a vector does not require the explicit formation of the
recursive butterfly since the computational kernel will be a product of a butterfly by a
vector, which involves O(n) operations. Then the computation of UT b and Uy can be
performed in O(dn) flops and, for small values of d , can be neglected compared to the
O(n3) cost of the factorization.

24

(a) Column-major (LAPACK) (b) Tile layout (PLASMA)

Figure 2.5: Column-major and tile layout sketch.

2.2.3 Tiled LDL T factorization

In order to increase parallelism on multicore machines, we use a tiled algorithm that starts
by decomposing A in NT ×NT tiles (blocks), such as

A =

A11 A12 . . . A1,NT

A21 A22 . . . A2,NT
...

...
. . .

...
ANT,1 ANT,2 . . . ANT,NT

N×N

, (2.15)

where each Aij is a tile of size NB × NB . The same decomposition can be applied to
L and D . With this decomposition and using the principle of the Schur complement, a
series of tasks can be generated to calculate each Lij and Dii .

The decomposition into tiles allows the computation to be performed on small blocks
of data that fit into cache. This leads to the need of a reorganization of data formerly given
in a column major layout, as depicted in Figure 2.5. The tile layout reorders data in such
a way that all data of a single block is contiguous in memory. Thus the decomposition of
the computation can either be statically scheduled to take advantage of cache locality and
reuse or be dynamically scheduled based on dependencies among data and computational
resources available.

The tiled algorithm for the LDL T factorization is based on the following operations:

xSYTRF: This LAPACKbased subroutine is used to perform the LDL T factorization of
a symmetric tile Akk of size NB ×NB producing a unit triangular tile Lkk and
a diagonal tile Dkk .
Using the notation input −→ output, the call xSYTRF(Akk , Lkk , Dkk) will perform

Akk −→ Lkk, Dkk = LDL T (Akk)

xSYTRF2: This subroutine first calls xSYTRF to perform the factorization of Akk and then
multiplies Lkk by Dkk . The call xSYTRF2(Akk , Lkk , Dkk , Wkk) will perform

25

Akk −→ Lkk, Dkk = LDL T (Akk),

Wkk = LkkDkk

xTRSM: This BLAS subroutine is used to apply the transformation computed by xSYTRF2
to an Aik tile by means of a triangular system solve. The call xTRSM(Wkk , Aik)
performs

Wkk, Aik −→ Lik = AikW
−T
kk

xSYDRK: This subroutine is used to update the tiles Akk in the trailing submatrix by
means of a matrix-matrix multiply. It differs from xGEMDM by taking advantage of
the symmetry of Akk and by using only the lower triangular part of A and L . The
call xSYDRK(Akk , Lki , Dii) performs

Akk, Lki, Dii −→ Akk = Aik − LkiDiiL
T
ki

xGEMDM: This subroutine is used to update the tiles Aij for i 6= j in the trailing subma-
trix by means of a matrix-matrix multiply. The call xGEMDM(Aij , Lik , Ljk , Dkk)
performs

Aij , Lik, Ljk, Dkk −→ Aij = Aij − LikDkkL
T
jk

Given a symmetric matrix A of size N × N , NT as the number of tiles, such as
in Equation (2.15), and making the assumption that N = NT × NB (for simplicity),
where NB × NB is the size of each tile Aij , then the tiled LDL T algorithm can be
described as in Algorithm 2.2.1. A graphical representation of Algorithm 2.2.1 is depicted
in Figure 2.6.

Algorithm 2.2.1 Tile LDL T Factorization

1: for k = 1 to NT do
2: xSYTRF2(Akk , Lkk , Dkk , Wkk)
3: for i = k + 1 to NT do
4: xTRSM(Wkk , Aik)
5: end for
6: for i = k + 1 to NT do
7: xSYDRK(Akk , Lki , Dii)
8:

9: for j = k + 1 to i− 1 do
10: xGEMDM(Aij , Lik , Ljk , Dkk)
11: end for
12: end for
13: end for

26

xTRSM
k=1, i=2

xSYTRF/xSYTRF2
k=1, j=1

xTRSM
k=1, i=3

xSYDRK
k=1, i=2

xSYDRK
k=1, i=3

xGEMDM
k=1, i=3, j=2

Figure 2.6: Graphical representation with dependencies of one repetition of the outer loop
in Algorithm 2.2.1 with NT = 3 .

2.2.4 Scheduling issues

Following the approach presented in [26], Algorithm 2.2.1 can be represented as a Di-
rected Acyclic Graph (DAG) where nodes are elementary tasks that operate on one or
several NB × NB blocks and where edges represent the dependencies among them. A
dependency occurs when a task must access data outputted by another task either to
update or to read them. Figure 2.7 shows a DAG for the tiled LDL T factorization when
Algorithm 2.2.1 is executed with NT = 4 . Once the DAG is known, the tasks can be
scheduled asynchronously and independently as long as the dependencies are not violated.

This dynamic scheduling results in an out-of-order execution where idle time is al-
most completely eliminated since only very loose synchronization is required between the
threads. Figure 2.8 (a) shows the execution trace of Algorithm 2.2.1 where tasks are
dynamically scheduled, based on dependencies in the DAG, and run on 8 cores of the
MagnyCours-48 machine (described in Section 2.3.2). The tasks were scheduled using
QUARK [103], which is the scheduler available in the PLASMA library. Each row in the
execution flow shows which tasks are performed and each task is executed by one of the
threads involved in the factorization. The trace follows the same color code as Figure 2.6.

Figure 2.8 (b) shows the trace of Algorithm 2.2.1 using static scheduling, which means
that each core’s workload is predetermined. The synchronization of the computation
for correctness is enforced by a global progress table. The static scheduling technique
has two important shortcomings. First is the difficulty of development. It requires full
understanding of the data dependencies in the algorithm, which is hard to acquire even
by an experienced developer. Second is the inability to schedule dynamic algorithms,
where the complete task graph is not known beforehand. This is the common situation
for eigenvalue algorithms, which are iterative by nature. Finally, it is almost impossible

27

with the static scheduling to overlap simply and efficiently several functionalities like the
factorization and the solve that are often called simultaneously. However for a single step,
as can be seen in Figure 2.8, the static scheduling on a small number of cores may outrun
the dynamic scheduling due to better data locality and cache reuse. It is important to
highlight that developing an efficient static scheduling can be very difficult and that the
dynamic scheduler notably reduces the complexity of programing tiled algorithms.

1:1 xSYTRF 1

xTRSM 2xTRSM 3 xTRSM 4

xSYDRK 5xSYDRK 6 xGEMDM 7 xSYDRK 8xGEMDM 9xGEMDM 10

xSYTRF 11

2:3

xSYDRK 14

xTRSM 12

xSYDRK 15

xTRSM 13

xTRMDM 21

xGEMDM 16

xSYTRF 17

3:6

4:2

xSYDRK 19

xTRMDM 22

xTRSM 18

5:2

xSYTRF 20

6:3

7:2

xTRMDM 23

8:1

9:1

10:2

Figure 2.7: DSYTRF DAG; NT = 4 .

2.3 Numerical experiments

2.3.1 Accuracy results

Experiments to measure the accuracy of each procedure described in the previous sections
were carried out using Matlab version 7.12 (R2011a) on a machine with a precision of
2.22 · 10−16 . Table 2.1 presents accuracy comparisons of linear systems solved using the
factors of A calculated by LDL T with: no pivoting (NP), partial pivoting (PP), tile-
wise pivoting (TP), and the Symmetric Random Butterfly Transformation followed by no
pivoting (SRBT NP) and tile-wise pivoting (SRBT TP). For tile-wise pivoting (TP), the
matrices have 64 tiles (8 × 8). The partial pivoting corresponds to the Bunch-Kaufman
algorithm as it is implemented in LAPACK. The tile-wise pivoting corrsponds to a tiled
algorithm where pivoting is performed within a tile (the LAPACK-like factorization is ap-

28

(a) Dynamic scheduling

(b) Static scheduling

Figure 2.8: Traces of tiled LDL T (MagnyCours-48 with 8 threads).

plied to the tile Akk). Tile-wise pivoting does not guarantee the accuracy of the solution;
it strongly depends on the matrix to be factorized and how the pivots are distributed.
However, it guarantees numerical stability of the factorization of each tile Akk , as long
as an appropriate pivoting technique is applied. Note that for all experiments the rook
pivoting [6] achieves the same accuracy as the partial pivoting and therefore is not listed.

All matrices are of size 1024 × 1024 , either belonging to the Matlab gallery or the
Higham’s Matrix Computation Toolbox [60] or generated using Matlab function rand.
Matrices |i − j| , max(i, j) and Hadamard are defined in the experiments performed
in [82]. Matrices rand1 and rand2 correspond to random matrices with entries uniformly
distributed in [0, 1] with all and 1/4 of the diagonal elements set to 0, respectively.
Matrices rand0 and rand3 are also random matrices, where the latter has its diagonal
elements scaled by 1/1000 .

For all test matrices, we suppose that the exact solution is x = [1 1 . . . 1]T and we set
the right-hand side b = Ax . In Table 2.1, the 2-norm condition number of each matrix is
listed. Note that we also computed the condition number of the randomized matrix which,
similarly to [13], is of same order of magnitude as cond A and therefore is not listed. For
each LDL T solver, the component-wise backward error is reported. The latter is defined
in [77] and expressed as

ω = max
i

|Ax̂− b|i
(|A| · |x̂|+ |b|)i

,

where x̂ is the computed solution.

As explained in Section 2.2.1, the random entries used to generate the butterflies are

29

Table 2.1: Component-wise backward error for LDL T solvers on a set of test matrices of
size 1024× 1024 and 64 tiles (8× 8) when applicable.

Matrix Cond A NP PP TP
SRBT

NP (IR) TP (IR)

condex 1 · 102 5 · 10−15 6 · 10−15 7 · 10−15 6 · 10−15 (0) 4 · 10−15 (0)

fiedler 7 · 105 Fail 2 · 10−15 7 · 10−15 9 · 10−15 (0) 1 · 10−15 (0)

orthog 1 · 100 8 · 10−1 1 · 10−14 5 · 10−1 3 · 10−16 (1) 4 · 10−16 (1)

randcorr 3 · 103 4 · 10−16 3 · 10−16 4 · 10−16 5 · 10−16 (0) 3 · 10−16 (0)

augment 5 · 104 7 · 10−15 4 · 10−15 8 · 10−15 2 · 10−16 (1) 5 · 10−15 (0)

prolate 6 · 1018 8 · 10−15 8 · 10−16 2 · 10−15 2 · 10−15 (0) 1 · 10−15 (0)

toeppd 1 · 107 5 · 10−16 7 · 10−16 6 · 10−16 2 · 10−16 (0) 1 · 10−16 (0)

ris 4 · 100 Fail 3 · 10−15 8 · 10−1 6 · 10−1 (10) 6 · 10−1 (10)

|i− j| 7 · 105 2 · 10−15 2 · 10−15 7 · 10−15 1 · 10−14 (0) 1 · 10−15 (0)

max(i,j) 3 · 106 2 · 10−14 2 · 10−15 5 · 10−15 1 · 10−14 (0) 1 · 10−15 (0)

Hadamard 1 · 100 0 0 0 7 · 10−15 (0) 4 · 10−15 (0)

rand0 2 · 105 1 · 10−12 7 · 10−14 1 · 10−13 1 · 10−15 (1) 1 · 10−15 (0)

rand1 2 · 105 Fail 1 · 10−13 2 · 10−11 1 · 10−15 (1) 1 · 10−15 (0)

rand2 1 · 105 Fail 5 · 10−14 6 · 10−13 1 · 10−15 (1) 2 · 10−15 (0)

rand3 8 · 104 4 · 10−13 7 · 10−14 4 · 10−13 1 · 10−15 (1) 1 · 10−15 (0)

NP: LDLT with No Pivoting SRBT: Symmetric Random Butterfly Transformation
PP: LDLT with Partial Pivoting followed by LDLT without pivoting
TP: LDLT with Tile-wise Pivoting IR: Iterative refinement number of iterations

chosen as exp(r10) where r is randomly chosen in [−1
2 ,

1
2] (matlab instruction rand).

The number of recursions d used in the SRBT algorithm has been set to 2. Hence, the
resulting cost of SRBT is ∼ 4n2 operations (see end of Section 2.2.2). To improve the
stability, iterative refinement (in the working precision) is added when SRBT is used.
Similarly to [5, 89], the iterative refinement algorithm is called while ω > (n+ 1)u , where
u is the machine precision. The number of iterations (IR) in the iterative refinement
process is also reported in Table 2.1.

For all matrices, except orthog and ris with TP and ris with SRBT, the factorization
with both tile-wise pivoting and randomization achieves satisfactory results. Iterative
refinement turns out to be necessary in a few cases when using SRBT but with never
more than one iteration (except for ris for which neither TP nor SRBT have achieved
accurate results). SBRT TP shows slightly better results than SRBT NP. The former
only requires iterative refinement for one of the test cases while the latter for a few. For
matrix prolate, all methods result in a small backward error. However, the solution
cannot be accurate at all due to the large condition number. Note that when matrices are
orthogonal (orthog) or proportional to an orthogonal matrix (Hadamard), LDL T must
not be used. Also, toeppd is positive definite and would normally be solved by Cholesky
and not LDL T . These three test cases have been used only for testing purposes. In
the case of the integer-valued matrix Hadamard , SRBT destroys the integer structure
and transforms the initial matrix into a real-valued one. For the four random matrices,
TP achieves results slightly less accurate than SRBT. However, in these cases iterative

30

refinement added to TP would enable us to achieve an accuracy similar to SRBT.

TP and SRBT are always more accurate than NP but they both failed to produce
results as accurate as PP for at least one of the test matrices. Nevertheless, despite the re-
duced number of test cases, they cover a reasonable range of matrices, including those with
zeros on the diagonal. Test case rand1 has only zeros on the diagonal and was accurately
solved by both techniques. This case fails at the very first step of the LDL T method with-
out pivoting. Test case orthog has been solved accurately with SRBT but not with TP.
For this particular case, when the pivot search is applied on the full matrix, rows/columns
1 and n are permuted, then rows/columns 2 and n − 1 are permuted, and so forth.
In others, the pivots are spread far apart and the tile-wise pivoting cannot reach them,
i.e. there are not good enough pivots within each tile.

2.3.2 Performance results

We present numerical experiments for our parallel LDL T solver where the randomiza-
tion by SRBT is computed as described in Section 2.2.2 with a maximum of 2 recursions.
The LDL T algorithm presented in Section 2.2.3 has been implemented by following the
software development guidelines of PLASMA, the Parallel Linear Algebra Software for
Multicore Architectures library [78]. In the remainder of this section, our solver for sym-
metric indefinite systems will be designated as SRBT-LDL T .

The numerical results that follow are presented for both a static and a dynamic sched-
uler (see Section 2.2.4) and have been carried out using the MagnyCours-48 system. This
machine has a NUMA architecture and is composed of four AMD Opteron 6172 Magny-
Cours CPUs running at 2.1GHz with twelve cores each (48 cores total) and 128GB of
memory. The theoretical peak of this machine is 403.2 Gflop/s(8.4 Gflop/sper core)
in double precision. Comparisons are made against version 10.3.2 of the Intel MKL [62]
library for multicore, and against the reference LAPACK 3.2 from Netlib, linked with
the same MKL BLAS multi-threaded library. SRBT-LDL T is linked with the sequential
version of MKL for the required BLAS and LAPACK routines. This version of MKL
achieves 7.5 Gflop/son a DGEMM (matrix-matrix multiplication) on one core. Unless other-
wise stated, the measurements were carried out using all the 48 cores of the MagnyCours-
48 system and run with numactl -interleaved=0-#. Also, a tile size of NB = 250 and
an inner-blocking size of IB = 125 .

Figure 2.9 shows the performance in Gflop/s of our SRBT solver against both MKL
and LAPACK LDL T routines xSYTRS (for real and double real) and xHETRS (for
complex and double complex). Note that we compare solvers that do not perform the same
operations because our solver does randomization (SRBT) and LDL T with no pivoting
while the other two solvers include pivoting. However, a definite matrix has been chosen
for performance comparison so that no permutations are actually made by MKL and
LAPACK(only search for pivot is performed). In our randomized solver, we use a tile
layout where data is stored in block NB ×NB (tiles) and performance is reported with
dynamic and static scheduling for four arithmetic precisions (real, double real, complex,
double complex). The static scheduling usually outruns the dynamic one, mostly due
to the overhead of the dynamic scheduler. As mentioned before, the progress table for
SRBT-LDL T is quite efficient, exposing the overhead caused by the dynamic scheduler.
We observe that SRBT-LDL T is about twice faster than MKL and four times faster than

31

LAPACKfor all the four arithmetic precisions presented in Figure 2.9.

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20

G
F

lo
p/

s

Matrix order [103]

Double Real (Magnycours-48)

Tile Static
Tile Dynamic
MKL
Lapack + MKL BLAS

Figure 2.9: Performance of SRBT solver against MKL and LAPACK (double precision)

Let us now study specifically the performance of the tiled LDL T factorization routine
described in Section 2.2.3 that represents the bulk of the computation our solver. This per-
formance is compared with that of the LU (DGETRF) and Cholesky (DPOTRF) factorization
routines from the version 2.4.1 of the PLASMA library. Since there is no LDL T factor-
ization in PLASMA and by analogy to LAPACK, the tiled LDL T factorization routine is
named here DSYTRFdouble precision real arithmetic. Figure 2.10 reports the execution time
of DSYTRF, DPOTRFand DGETRFwith dynamic and static scheduling. The static scheduling
scheme usually delivers the highest performance. This happens mostly because there is
no overhead on scheduling the tasks and, as mentioned before, the LDL T algorithm lends
itself a quite efficient progress table. As expected, LDL T is noticeably faster than LU
and only moderately slower than Cholesky. This clearly states that it is advantageous,
in terms of time, to factorize a symmetric matrix using DSYTRF(instead of DGETRF) and
also that DSYTRF(instead of DPOTRF) can be used on decomposing SPD matrices (or diag-
onally dominant matrices, because they do not require pivoting) with no substantial time
overhead.

The parallel speedup or scalability of DSYTRFis shown in Figure 2.11 for matrices of
order 5000, 10000 and 20000 [N], both for dynamic and static scheduling. As anticipated,
the parallel speedup increases as the matrix order increases. This happens because the
bigger the matrix, the more tasks are available to be executed concurrently, resulting in
higher scalability.

The parallel performance actually depends on several factors, one of them being the
tile size [NB]. The performance reported previously has been obtained with NB = 250
and IB = 125 , where IB stands for the internal blocking size that is used by the

32

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
[m

ill
is

ec
on

ds
]

Matrix order [103]

DGETRF, DSYTRF and DPOTRF (Magnycours-48)

DGETRF Dynamic
DGETRF Static
DSYTRF Dynamic
DSYTRF Static
DPOTRF Dynamic
DPOTRF Static

Figure 2.10: Execution time of Cholesky (PLASMA), LU (PLASMA) and tiled LDL T ,
dynamic (solid line) and static (dashed line) scheduling - double precision.

 1

 6

 12

 18

 24

 30

 36

 42

 48

 1 6 12 18 24 36 48

T
1

/ T
th

re
ad

s

Threads

DSYTRF (Magnycours-48)

n = 5000 Dynamic
n = 5000 Static
n = 10000 Dynamic
n = 10000 Static
n = 20000 Dynamic
n = 20000 Static
Linear

Figure 2.11: Parallel speed-up; dynamic (solid line) and static (dashed line) scheduling

33

blocked BLAS routines. As depicted in Figure 2.12, 250 is not necessarily the optimal tile
size. In order to achieve optimal performance, NB and other parameters must be tuned
accordingly to the size of the matrix to be decomposed and the number of threads.

 0

 50

 100

 150

 200

 250

 300

 100 200 300 400 500 600

G
flo

ps
/s

Tile Size [NB]

DSYTRF (Magnycours-48)

n = 20000 Dynamic
n = 10000 Dynamic
n = 5000 Dynamic

n = 20000 Static
n = 10000 Static
n = 5000 Static

Figure 2.12: Tile-size performance of tiled LDL T

34

Chapter 3

Using condition numbers to assess
numerical quality in
high-performance computing
applications

3.1 Introduction to condition numbers

In addition to performing fast computations on today’s parallel systems, one major chal-
lenge for the high-performance computing community is to provide physicists with a re-
liable indicator for the difficulty to solve a numerical problem with a satisfying accuracy.
Indeed most numerical algorithms are implemented in finite-precision floating-point arith-
metic generating rounding and truncation errors. Other types of errors might also affect
the numerical quality of solutions: errors due to instrumental measurements, model errors
(e.g. errors coming from linearization when the initial problem is nonlinear, or simplifica-
tion in the physics)... More generally, controlling rounding errors in numerical algorithms
has always been a major concern in scientific computing and numerical validation has
been the subject of extended research in recent years [18, 68, 70, 71, 87]. For instance
some specific numerical methods have been developed to study rounding-error propagation
using interval arithmetic [86] or stochastic arithmetic [70].

The method of error analysis that we consider in this chapter is based on an approach
referred to as backward error analysis in [101] in which various types of errors can be con-
sidered. The notion of “sensitivity” of a solution to change in data was initially introduced
by Alan Turing [97] as a way to measure the mathematical difficulty to solve a problem.
This sensitivity is commonly measured using a quantity named condition number which
is defined by Rice [85] as the maximum amplification factor between a small perturbation
in the data and the resulting change in the problem solution. Evaluating the condition
number of a problem is crucial for assessing the accuracy of a computed solution (assuming
the underlying algorithm is stable).

Errors on solutions are classically measured using forward errors while errors on data
are measured using backward errors. Let us recall briefly how these quantities are defined
by considering the following mathematical problem where the solution x can be expressed

35

as a function g of a data y :
(P) x = g(y),

the data and solution spaces E and G being equipped respectively with norms ‖·‖E and
‖·‖G . Then the computed solution x̃ of (P) satisfies a “perturbed” problem

(P ′) x̃ = g(y + ∆y),

where (P ′) is a nearby problem for which x̃ is an exact solution. Then the absolute
forward error is expressed as ‖x− x̃‖ . We often consider the relative forward error
‖x− x̃‖/‖x‖ which has the advantage of being independent to scaling. The backward
error measures the change in data and corresponds to the distance between (P) and
(P ′) . If we have an approximate solution x̃ , it can be expressed as

η(x̃) = inf{‖∆y‖ : x̃ = g(y + ∆y)}.

If g is differentiable, which is the case for most linear algebra problems, then the absolute
condition number of g at y ∈ E is defined in [43] by

κ(y) =
∣∣∣∣∣∣g′(y)

∣∣∣∣∣∣ = max
z 6=0

‖g′(y).z‖G
‖z‖E

, (3.1)

where |||·||| denotes the operator norm subordinated to the norms ‖·‖E and ‖·‖G . Note
that κ(y) can be normalized using the expression κ(y)‖y‖E/‖g(y)‖G resulting in a so-
called relative condition number.

A common rule of thumb [60] gives the relationship between these quantities as

‖x− x̃‖ ∼ η(x̃)× κ(y). (3.2)

A a result the condition number can help predicting the error on the solution. It can also
indicate in a linear solver if regularization (or iterative refinement) could be necessary to
improve the quality of the solution. Of course, since the condition number is a measure of
sensitivity at first order, Equation (3.2) will be accurate only if the first order asumption
is realistic.

The main difficulty of this approach comes from the possibility or not to compute
or estimate the condition number of a given problem. In general it requires that the
solution can be expressed as an explicit function of the data (or expressed implicitely as
F (x, y) = 0) and that this function is differentiable [85]. So in general condition numbers
are known for only a limited class of mostly linear problems and not for all parameter
sensitivity problems. The targetted applications in our research for condition number
calculations are linear algebra solvers which are at the heart of many HPC applications.
For most of these solvers, the function g defining the problem (P) is differentiable. The
condition number can then be expressed like in Equation (3.1) i.e. as an operator norm
of a linear function. This measure is an attainable bound in the limit as ∆y → 0 , and
may therefore be approximate depending on the size of the perturbations. In general, the
larger the ill-condition of the problem, the smaller the perturbations should be for this
measure to provide a good bound, or guide to the possible solution change. Note that
the forward error predicted by Equation (3.2) by the condition number corresponds to
the “worst case” and if it is not too large, it enables us to assess the numerical quality

36

of a solution or, on the contrary, to warn the user that some perturbations can generate
a significant error. The choice of metrics used to measured errors on data and solution
space and their differentiability is also important.

In this chapter we describe how condition numbers can be computed or estimated for
some linear algebra problems, namely linear least squares and linear systems. In Sec-
tion 3.2, we study the conditioning of linear least squares (LLS) problems. We provide
computable expressions and statistical estimates for the conditioning of LLS problems
and we show that the resulting computational cost is affordable and much cheaper than
the cost for the solution itself. We finally describe how these condition numbers can be
computed in practice using current parallel libraries respectively for distributed memory
and heterogeneous multicore+GPU computers. In Section 3.3, we study the conditioning
of the total least squares (TLS) problem. We provide computable estimates for the condi-
tioning of the TLS problem and we show on some experiments the limitation of the first
order approach when using Equation (3.2) to predict the error on the solution.

3.2 Computing least squares condition numbers

3.2.1 Least squares conditioning

We study in this section the conditioning of the overdetermined LLS problem i.e. the
problem (P) mentioned in Section 3.1 can be expressed here as

min
x∈Rn

‖Ax− b‖2, (3.3)

with A ∈ Rm×n,m ≥ n and b ∈ Rm . Supposing that A has full column rank, we have
a unique solution x = (ATA)−1AT b = A†b (A† denotes the pseudo-inverse of A). Note
that consistent linear systems can be considered as special cases of LLS where we have
m = n and a residual r = b−Ax equal to zero.

The data and solution spaces are then respectively E = Rm×n×Rm and G = Rn and
the function g for which we want to compute the condition number is

g : Rm×n × Rm −→ Rn
A, b 7−→ g(A, b) = x(A, b) = (ATA)−1AT b.

(3.4)

Since A has full rank n , g is continuously differentiable in a neighbourhood of (A, b) .

LLS are in general more sensitive to change (or errors) in data than linear systems,
in particular when the right-hand side is too far from the column space (see e.g. [63, p.
98]). It is then crucial to be able to assess the quality of the solutions obtained after
solving these problems in practical applications. It was shown in [44] that the 2-norm
condition number of the matrix A , defined as κ2(A) = ‖A‖2‖A+‖2 plays a significant
role in the sensitivity analysis of least squares problems. It was later proved in [100] that
the sensitivity of LLS problems is proportional to κ2(A) when the residual vector is small
and to κ2(A)2 otherwise. Then [43] provided a closed formula for the condition number
of linear least squares problems, using the Frobenius norm to measure the perturbations
of A . Since then many results on normwise LLS condition numbers have been published
(see e.g. [4, 20, 41, 49, 50]).

37

It was observed in [59] that the normwise condition number approach can lead to a
loss of information. Indeed it consolidates all sensitivity information into a single number
while in some cases this sensitivity can vary significantly among the different solution
components (some examples for LLS are presented in [12, 66]). To overcome this issue,
it was proposed the notion of “componentwise” condition numbers or condition numbers
for the solution components [29]. Note that this approach must be distinguished from the
componentwise metric also applied to LLSP for instance in [15, 31]. This approach was
generalized by the notion of partial or subspace condition numbers, i.e. the conditioning
of LTx with L ∈ Rn×k, k ≤ n , proposed for instance in [4] for least squares or [28] for
linear systems. When L is a canonical vector, it is equivalent to the condition number of
a specific component, while when L is the identity matrix, it is the same as the classical
condition number mentioned above. The motivation for computing the conditioning of
LTx can be found for instance in [4, 12] for normwise LLS condition numbers.

Even though the condition numbers provide interesting information about the quality
of the computed solution, they are expected to be calculated in an acceptable time com-
pared to the cost for the solution itself. Computing the exact (subspace or not) condition
number requires O(n3) flops when a QR factorization (or normal equations) has been
used to solve the LLS and can be reused to compute the conditioning [4, 12]. Although
this cost is affordable compared to the cost for solving the problem (O(mn2) flops), sta-
tistical estimates can reduce this cost to O(n2) [4, 52, 65, 66]. The theoretical quality of
the statistical estimates can be formally measured by the probability to give an estimate
in a certain range around the exact value.

In general we are interested in computing the LLS condition numbers for two special
cases. The first case is when L is the identity matrix (conditioning of the solution) and
the second case is when L is a canonical vector ei (conditioning of a solution component).

Regarding the choice of norm to measure perturbations, we proposed in several pa-
pers [4, 12] to use the Euclidean norm for the solution space and, for the data space, a
product norm defined by

‖(∆A,∆b)‖F =

√
α2 ‖∆A‖2F + β2 ‖∆b‖22, α, β > 0,

where ‖·‖F denotes the Frobenius matrix norm, and α, β are two positive real numbers.
This product norm has the advantage of being very flexible because the coefficients α and
β allow us to monitor the perturbations on A and b . For instance, large values of α
(resp. β) enable us to obtain condition number problems where mainly b (resp. A) are
perturbed. For instance we can address the case where only b (resp. A) is perturbed
by choosing α = +∞ and β = 1 (resp. α = 1 and β = +∞) Another classical choice
corresponds to the case where perturbations on the data ∆A and ∆b are measured
relatively to the original data A and b , i.e. α = 1

‖A‖F
and β = 1

‖b‖2
.

In the remainder of this chapter we consider the case where α = β = 1 , which has
the advantage of providing us with simplified formulas and, as suggested in [49], to be
appropriate to estimate the forward error obtained when the LLS problem is solved via
with normal equations. We also make the assumption that the LLS has already been
solved with either the normal equations method or a QR factorization. Then the solution
x and the residual r have been already computed and the R-factor of the QR factorization
of A is available (we recall that the Cholesky factor of the normal equations is, in exact
arithmetic, the R-factor of the QR factorization up to some signs).

38

We can obtain from [12] the following closed formula for the condition number of the
LLS solution:

κLS = ‖R−1‖2
(
‖R−1‖22‖r‖22 + ‖x‖22 + 1

) 1
2 . (3.5)

This equation requires the computation of the smallest singular value of the matrix A (or
R). This involves O(n3) flops if we compute the full SVD of A (or R). But ‖R−T ‖2
can also be approximated by other matrix norms ‖R−1‖1 or ‖R−1‖∞ (using e.g. [60, p.
293]).

Using again [12], we can express in Equation (3.6) the condition number of the com-
ponent xi = eTi x and then calculate a vector κCW ∈ Rn with components κi being the
exact condition number for the i th component expressed by

κi =
(
‖R−1R−T ei‖22‖r‖22 + ‖R−T ei‖22(‖x‖22 + 1)

) 1
2 (3.6)

The computation of each κi requires two triangular solves (RT y = ei and Rz = y)
corresponding to 2n2 flops. If we want to compute all κi , it is more efficient to solve
RY = I and compute Y Y T , which requires about 2n3/3 flops.

3.2.2 Statistical condition estimation

It is possible to reduce the computational cost for estimating the LLS conditioning by using
statistical techniques. This approach was initially proposed in [52, 65, 66] and reduces the
cost to O(n2) flops. The theoretical quality of such statistical estimates can be formally
measured by the probability to give an estimate in a certain range around the exact value.
After the randomization method described in Chapter 2, these statistical techniques give
another illustration on how statistics can be applied to enhance numerical linear algebra
calculations. These techniques are very promising and are currently under development
for integration into public domain libraries LAPACK and MAGMA.

We propose an algorithm that, similarly to what was proposed in [28] for linear systems,
enables us to estimate the condition number of the LLS solution using the method called
small-sample theory [65] that provides statistical condition estimates for matrix functions.
Using this method, we can derive Algorithm 3.2.1 that computes a statistical estimate
κ̄LS for κLS given in Equation (3.5). The accuracy of this estimate can be tweaked by
modifying the number q of considered random samples. The computation of κ̄LS involves
the computation of the QR factorization of an n × q matrix for O(nq2) flops. It also
involves q times two n×n triangular solves, each triangular system being solved in O(n2)
flops. Then the total computational cost is O(qn2) flops (if n� q).

It is also possible to estimate the conditioning of the components of x by using an
approach based on [66]. Algorithm 3.2.2 corresponds to the algorithm that uses unstruc-
tured perturbations and it can be compared with the exact value given in Equation (3.6).
Algorithm 3.2.2 computes a vector κ̄CW = (κ̄1, · · · , κ̄n) containing the statistical esti-
mate for the κi ’s. Depending on the needed accuracy for the statistical estimation, the
number of random perturbations q ≥ 1 applied to the input data in Algorithm 3.2.2 can
be adjusted. This algorithm involves two n×n triangular solves with q right-hand sides,
which requires about qn2 flops.

We can compare the statistical estimates with their corresponding exact values on
random LLS problem with known solution using of variant of the method given in [81].

39

Algorithm 3.2.1 Statistical condition estimation for linear least squares solution
(SCE LLS)

Require: q ≥ 1 , the number of samples
Generate q vectors z1, z2, ..., zq ∈ Rn with entries in U(0, 1)
Orthonormalize the vectors zi using a QR factorization
for j = 1 to q do

Compute κj =
(
‖R−1R−T zj‖22‖r‖22 + ‖R−T zi‖22(‖x‖22 + 1)

) 1
2

end for
Compute κ̄LS =

ωq

ωn

√∑q
j=1 κ

2
j with ωq =

√
2

π(q− 1
2

)

Algorithm 3.2.2 Componentwise statistical condition estimate for linear least squares
(SCE LLS CW)

Require: q ≥ 1 , the number of perturbations of input data
for j = 1 to q do

Generate Sj ∈ Rn×n , hj ∈ Rn and gj ∈ Rn with entries in N (0, 1)
Compute uj = R−1(gj − Sjx+ ‖Ax− b‖2R−Thj)

end for
Let p = m(n+ 1) , compute vector κ̄CW =

∑q
i=1 |uj |
qωp
√
p with ωq =

√
2

π(q− 1
2

)

The matrix A is generated using

A = Y

(
D
0

)
ZT , Y = I − 2yyT , Z = I − 2zzT

where y ∈ Rm and z ∈ Rn are random unit vectors and D = n−ldiag(nl, (n − 1)l, (n −
2)l, · · · , 1) . We have x = (1, 22, ..., n2)T and cond2(A) = nl . The residual vector is given

by r = Y

(
0
v

)
where v ∈ Rm−n is a random vector of norm nr and the right-hand

side is given by b = Y

(
DZx
v

)
. We generate such random LLS problems of size m×n

with m = 9984 and n = 2496 .
In Figure 3.1 we compare the estimate κLS obtained via Algorithm 3.2.1 with the

exact condition number κLS computed using Equation (3.5) and another estimate κ̂LS
given in [4] using one sample (q = 1) and for several values of cond2(A) . We observe
that the two statistical estimates lie within factor 1.7 of the exact value.

The accuracy of componentwise statistical estimates can be shown in Figure 3.2. We
set cond2(A) = 2.5 · 103 and nr = 1 . Figure 3.2 (a) depicts the conditioning for
all LLS solution components, computed as κi/|xi| where each κi is computed using
Equation (3.6). The interest of the componentwise approach is visible here since the
sensitivity to perturbations of each solution component varies significantly (from 102 to
108) while the normalized condition number of the solution computed using Equation 3.5 is
κLS/ ‖x‖2 = 2.5 ·103 . Then we represent in Figure 3.2 (b) the ratio between the statistical
condition estimate computed via Algorithm 3.2.2, considering two samples (q = 2), and
the exact value computed using Equation (3.6). The ratio is computed as an average on

40

κ̂LS/κLS

κLS/κLS

R
at
io
:
st
at
is
ti
ca
l
es
ti
m
at
e
/
ex
ac
t
va
lu
e

cond2(A)
104 105 106 107 108 109 1010

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Figure 3.1: Ratio between statistical and exact condition numbers

100 random problems. We observe that this ratio is lower than 1.2 and that the quality of
the estimate is similar for all solution components. Other tests on accuracy of statistical
condition estimates can be found in [17].

3.2.3 Using HPC libraries to evaluate least squares conditioning

In this section we describe how to compute the quantities defined in Sections 3.2.1 and 3.2.2
using the high-performance linear algebra libraries (Sca)LAPACK and MAGMA.

3.2.3.1 Computation with (Sca)LAPACK

ScaLAPACK being designed for parallel distributed memory machines, it enables us to
address large size LLS problems. Note that the routines that we use to compute condition
numbers have similar nomenclature in both libraries LAPACK and ScaLAPACK. We
suppose that we have used the (Sca)LAPACK routine (P)DGELS that solves the LLSP
using a QR factorization of A. Note that, as already mentionned in Section 1.3, it is possible
to have a more accurate solution using extra-precise iterative refinement [33]. We give in
Table 3.1 the (Sca)LAPACK routines used for computing the condition numbers of an LLS
solution or its components and the corresponding number of flops. We observe that the
cost for computing all the κi ’s or estimating κLS is always O(n3) . When m� n , this
cost is affordable if we compare it to the cost of the least squares solution using Householder
QR factorization (2mn2 − 2n3/3) or the normal equations (mn2 + n3/3). However, on
some new architectures (e.g. GPU), the implementation of SVD or eigenvalue algorithms
might not be efficient compared to a QR factorization and the cost for computing κLS
can be expensive in practice.

41

κLS/‖x‖2
κi/|xi|

C
on
d
it
io
n
in
g

Components
1 500 1000 1500 2000 2496

102

103

104

105

106

107

108

109

(a) κi/|xi|

R
at
io
:
st
at
is
ti
ca
l
es
ti
m
at
e
/
ex
ac
t
va
lu
e

Components
1 500 1000 1500 2000 2496

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

(b) Ratio κ̄i/κi

Figure 3.2: Componentwise conditioning (left) and comparison with statistical estimate
(right).

Table 3.1: Computation of least squares conditioning with (Sca)LAPACK

condition number linear algebra operation (Sca)LAPACK routines flops count

κLS estimate ‖R−1‖1 or ∞ (P)DTRCON n2

compute
∥∥R−1

∥∥
F

(P)DTRTRI n3/3

κ̄LS generate random orthogonal vectors (P)DTRSV n2

2 triangular solves

κi RT y = ei and Rz = y (P)DTRSV 2n2

all κi, i = 1, n RY = I and compute Y Y T (P)DPOTRI 2n3/3

κ̄CW generate random vectors (P)DTRSV n2

2 triangular solves

42

For estimating κLS , we need to have an estimate of
∥∥A†

∥∥
2

i.e.
∥∥R−1

∥∥
2

. To avoid

the computation of an SVD of R−1 , a possibility is to approximate
∥∥R−1

∥∥
2

using other
matrix norms. For instance, ‖R−1‖1 or ‖R−1‖∞ can be estimated using Higham mod-
ification [60, p. 293] of Hager’s [55] method as it is implemented in the (Sca)LAPACK
routine (P)DTRCON. The cost is O(n2) .

3.2.3.2 Computation with MAGMA

In many physical applications, LLS problems are expressed using a statistical model often
referred to as linear statistical model where we have to solve

b = Ax+ ε, A ∈ Rm×n, b ∈ Rm, rank(A) = n,

where ε is a vector of random errors having expected value E(ε) = 0 and variance-
covariance V (ε) = σ2

b I . In statistical language, the matrix A is called the regression
matrix and the unknown vector x is called the vector of regression coefficients.
Following the Gauss-Markov theorem [105], the least squares estimate x̂ is the linear
unbiased estimator of x satisfying

‖Ax̂− b‖2 = min
x∈Rn

‖Ax− b‖2,

with minimum variance-covariance equal to

C = σ2
b (A

TA)−1. (3.7)

The diagonal elements cii of C give the variance of each component x̂i of the solution.
The off-diagonal elements cij , i 6= j give the covariance between x̂i and x̂j . Then
instead of computing condition numbers (which are notions more commonly handled by
numerical linera algebra practitioners) physicists often compute the variance-covariance
matrix whose entries are intimately correlated with condition numbers κi and κLS men-
tioned previously. In the following we describe how we can compute totally or partially
the variance-covariance matrix. To our knowledge, there is no existing routine in public
domain libraries LAPACK or ScaLAPACK to compute the variance-covariance contrary
to the NAG library [93]. This is why we also propose an implementation based on the
MAGMA library in order to take advantage of GPU computing. More details about how
to compute the variance-covariance matrix using (Sca)LAPACK can be found in [12].

When the variance-covariance matrix has been computed, the condition numbers de-
scribed in Section 3.2 can be easily obtained. Indeed, we can use the fact that

∥∥R−1
∥∥2

2
=

‖C‖2
σ2
b

, ‖R−T ei‖22 = cii
σ2
b

, and ‖R−1R−T ei‖2 =
‖Ci‖2
σ2
b

where Ci and cii are respectively the

i th column and the i th diagonal element of the matrix C . Then by replacing respectively
in Equations (3.5) and (3.6) we get the formulas

κLS =
‖C‖1/22

σb
((m− n)‖C‖2 + ‖x‖22 + 1)1/2, (3.8)

and

κi =
1

σb
((m− n)‖Ci‖22 + cii(‖x‖22 + 1))1/2. (3.9)

43

Note that, when m > n , 1
m−n ‖r‖

2
2 is an unbiased estimate of σ2

b [20, p. 4].

Let us now evaluate the performance for computing LLS condition numbers from
the variance-covariance matrix using the MAGMA library for heterogeneous and hybrid
architectures (release 1.2.1). In our implementation, MAGMA is linked with the libraries
MKL 10.3.8 and CUDA 4.1 respectively for multicore and GPU. The tests have been
achieved on a multicore processor Intel Xeon E5645 (2 sockets × 6 cores) running at 2.4
GHz (the cache size per core is 12 MB and the size of the main memory is 48 GB). This
system hosts two GPU NVIDIA Tesla C2075 running at 1.15 GHz with 6 GB memory
each.

We observe in Figure 3.3 that the computation of the variance-covariance matrix and
of the conditioning of the components are significantly faster than the problem solution
with respectively a time factor of 3 and 2, this factor increasing with the problem size. The
κi ’s are computed with the variance-covariance matrix (using Equation (3.9)). The time
overhead between the computation of the κi ’s and the variance-covariance computation
comes from the computation of the norms of the columns (routine cublasDnrm2) which
is non optimal due to communication cost. As expected, the routines that compute the
statistical condition estimates for the solution and for all solution components outperform
the other routines. Note that we did not mention on this graph the performance for com-
puting κLS (using Equation (3.8)). Indeed this involves an eigenvalue decomposition of
the variance-covariance matrix (MAGMA routine magma dsyevd gpu), which turns out
to be much slower than the LLS solution (MAGMA routine magma dgels3 gpu) in spite of
a smaller number of arithmetic operations. This illustrates the fact, even though the the-
oretical number of flops for computing κLS is much smaller that for computing x (O(n3)
vs O(mn2)), having an efficient implementation on the targetted architecture is essential
to take advantage of the gain in flops. In the particular case of condition estimation, this
confirms the interest of considering statistical estimates on these architectures. More gen-
erally, this application gives another illustration of how statistical techniques accelerate
linear algebra calculations on current parallel architectures, similarly to the randomization
approach described in Chapter 2.

3.3 The total least squares approach

3.3.1 Conditioning of the total least squares

We study in this section the conditioning of the total least squares (TLS) problem Ax ' b ,
where a certain type of measurement errors affecting A is considered. This case is treated
by the statistical model referred to as Errors-In-Variables model (see e.g. [61, p. 230] and
[20, p. 176]), where we have the relation

(A+ E)x = b+ ε.

In general it is assumed in this model that the rows of [E, ε] are independently and
identically distributed with common zero mean vector and common covariance matrix.
The corresponding linear algebra problem, discussed originally in [45], can be expressed
as:

min
E,ε
‖(E, ε)‖F , (A+ E)x = b+ ε. (3.10)

44

SCE LLS
SCE LLS CW
Variance-covariance matrix
Conditioning of all components
LLS solution

T
im

e
(s
)

Problem size (m× n)
9984× 2496 14080× 3520 17280× 4320 19968× 4992 22272× 5568 24448× 6112 26368× 6592

0

1

2

3

4

5

6

7

8

9

10

Figure 3.3: Performance for computing LLS condition numbers with MAGMA

As mentioned in [61, p. 238], the TLS method enables us to obtain a more accurate
solution when entries of A are perturbed under certain conditions.

Let A ∈ Rm×n and b ∈ Rm , with m > n . Following [61], we consider the two
singular value decompositions of A , and [A, b] : A = U ′Σ′V

′T and [A, b] = UΣV T . We
also set Σ = diag(σ1, . . . , σn+1) , Σ′ = diag(σ′1, . . . , σ

′
n) , where the singular values are in

nonincreasing order, and define λi = σ2
i , and λ′i = σ

′2
i . From [20, p. 178], we have the

interlacing property

σ1 ≥ σ′1 ≥ σ2 ≥ · · · ≥ σn ≥ σ′n ≥ σn+1. (3.11)

We consider the total least squares problem expressed in Equation (3.10) and we assume
in this text that the genericity condition σ′n > σn+1 holds (for more information about
the “nongeneric” problem see e.g. [61, 80]). From [61, Theorems 2.6 and 2.7], it follows
that the TLS solution x exists, is unique, and satisfies

x =
(
ATA− λn+1In

)−1
AT b, (3.12)

where In denotes here the n× n identity matrix.

In addition,

[
x
−1

]
is an eigenvector of [A, b]T [A, b] associated with the simple eigen-

value λn+1 , i.e. σ′n > σn+1 guarantees that λn+1 is not a semi-simple eigenvalue of
[A, b]T [A, b] . As for linear least squares problems, we define the total least squares resid-
ual r = b−Ax , which enables us to write

λn+1 =
1

1 + xTx

[
xT , −1

] [ATA AT b
bTA bT b

] [
x
−1

]
=

rT r

1 + xTx
. (3.13)

45

As mentioned in [61, p. 35], the TLS solution is obtained by scaling the last right singular
vector vn+1 of [A, b] until its last component is −1 and, if vi,n+1 denotes the i th
component of vn+1 , we have

x = − 1

vn+1,n+1
[v1,n+1, . . . , vn,n+1]T . (3.14)

The TLS method involves an SVD computation and the computational cost is higher than
that of a classical LLS problem (about 2mn2 + 12n3 as mentioned in [46, p. 598], to be
compared with the approximately 2mn2 flops required for LLS solved via Householder QR
factorization). However, there exist faster methods referred to as “partial SVD” (PSVD)
that calculate only the last right singular vector or a basis of the right singular subspace
associated with the smallest singular values of [A, b] (see [61, p. 97]).

Similarly to Section 3.2.1, we measure the perturbations of the data A and b using

the product norm defined on Rm×n×Rm by ‖(A, b)‖F =
√
‖A‖2F + ‖b‖22 and we take the

Euclidean norm ‖x‖2 for the solution space Rn . The TLS solution x can be expressed
as a function of the data A and b using the mapping g defined by

g : Rm×n × Rm −→ Rn
(A, b) 7−→ g(A, b) = x = (ATA− λn+1In)−1AT b.

Since λn+1 is simple, g is a Fréchet-differentiable function of A and b , and the genericity
assumption ensures that the matrix (ATA − λn+1In)−1 is also Fréchet-differentiable in
a neighborhood of (A, b) . As a result, g is Fréchet-differentiable in a neighborhood of
(A, b) . Note that we studied a more general case in [16] by considering the conditioning
of LTx , where L is an n × k matrix, with k ≤ n . Using an approach already applied
for LLS problem in Section 3.2.1, the computation of the condition number of the TLS
problem is based on the evaluation of the Fréchet dérivative of g . Under the genericity
assumption, we showed in [16] that g is Fréchet differentiable in a neighborhood of (A, b)
and that its derivative g′ is expressed by

g′(A, b).(∆A,∆b) = B−1
λ

(
AT +

2xrT

1 + xTx

)
(∆b−∆Ax) +B−1

λ ∆AT r, (3.15)

with Bλ = ATA − λn+1In . Then, setting Dλ = B−1
λ

(
AT + 2xrT

1+xT x

)
∈ Rn×m , the TLS

condition number κTLS can be expressed as

κTLS =
∥∥Mg′

∥∥
2
, (3.16)

where

Mg′ =
[
−xT ⊗Dλ +

(
rT ⊗ (B−1

λ)
)
P, Dλ

]
∈ Rn×(nm+m)

and ⊗ denotes the Kronecker product of two matrices [48, p. 21].
Then computing κTLS reduces to computing the 2-norm of the n× (nm+m) matrix

Mg′ . For large values of n or m , it is not possible to build explicitly the generally
dense matrix Mg′ . Iterative techniques based on the power method [60, p. 289] or on the
Lanczos method [46] are better suited. These algorithms involve however the computation

46

of the product of MT
g′ by a vector y ∈ Rn . This operation can be performed using

the adjoint operator of g′ . We also used in [15] the technique consisting of computing
condition numbers by working on the dual spaces.

Using the scalar products trace(AT1 A2) + bT1 b2 and yT1 y2 respectively on Rm×n×Rm
and Rn , the adjoint of g′ can be expressed as

g
′∗(A, b) : Rn −→ Rm×n × Rm

y 7−→
(
−DT

λ yx
T + ryTB−1

λ , DT
λ y
)
.

(3.17)

Using (3.15) and (3.17), we can now write in Algorithm 3.3.1 the iteration of the power
method ([60, p. 289]) to compute the TLS condition number κTLS . In this algorithm
we assume x and λn+1 are available, and we iterate (Ap, bp) to approach the optimal
(∆A,∆b) that realizes (3.1).

Algorithm 3.3.1 Condition number of TLS problem

Require: Select initial vector y ∈ Rn
for p = 1, 2, ... do

(Ap, bp) =
(
−DT

λ yx
T + ryTB−1

λ , DT
λ y
)

ν = ‖(Ap, bp)‖F
(Ap, bp)← (1

ν ·Ap, 1
ν · bp)

y = B−1
λ

(
AT + 2xrT

1+xT x

)
(bp −Apx) +B−1

λ ATp r

end for
κTLS =

√
ν

The quantity ν computed by Algorithm 1 is the largest eigenvalue of Mg′MT
g′ . Since

κTLS =
∥∥Mg′

∥∥
2

then the condition number κTLS is also the largest singular value of
Mg′ i.e.

√
ν . As mentioned in [46, p. 331], the algorithm will converge if the initial y

has a component in the direction of the corresponding dominant eigenvector of Mg′MT
g′ .

When there is an estimate of this dominant eigenvector, the initial y can be set to this
estimate but in many implementations, y is initialized as a random vector. The algorithm
is terminated by a “sufficiently” large number of iterations or by evaluating the difference
between two successive values of ν and comparing it to a tolerance given by the user.

In practice the TLS solution is obtained by Equation (3.14) and involves an SVD
computation. This is why we proposed in [16] a formula for κTLS that can be computed
with quantities that may be already available from the solution process. In particular it
is shown that

κTLS = (1 + ‖x‖22)
1
2

∥∥∥D′
[
V
′T , 0n,1

]
V
[
D, 0n,1

]T∥∥∥
2
, (3.18)

where

D′ = diag
(

(σ
′2
1 − σ2

n+1)−1, . . . , (σ
′2
n − σ2

n+1)−1
)

and

D = diag
(

(σ2
1 + σ2

n+1)
1
2 , . . . , (σ2

n + σ2
n+1)

1
2

)
,

(0n,1 denotes the zero column vector of length n).

47

In many applications, an upper bound would be sufficient to give an estimate of the
conditioning of the TLS solution. This upper bound, also given in [16], is

κ̄TLS = (1 + ‖x‖22)
1
2

(σ2
1 + σ2

n+1)
1
2

(σ′2n − σ2
n+1)

.

3.3.2 Limitation of the first-order approach

As explained in Section 3.1, the condition number, defined as the norm of the Fréchet
derivative of the solution, is a first order term. In the following example, we show the
limitation of this approach in providing good error bounds, depending on the conditioning
of the problem and on the size of the perturbations.

We consider the TLS problem Ax ≈ b where [A, b] is defined by

[A, b] = Y

(
D
0

)
ZT ∈ Rm×(n+1), Y = Im − 2yyT , Z = In+1 − 2zzT ,

where y ∈ Rm and z ∈ Rn+1 are random unit vectors, D = diag(n, n− 1, . . . , 1, 1− ep)
for a given parameter ep . The quantity σ′n− σn+1 measures the distance of our problem
to nongenericity and, due to Equation (3.11), we have in exact arithmetic

σ′n − σn+1 ≤ σn − σn+1 = ep.

Then by varying ep , we can generate different TLS problems and by considering small
values of ep , it is possible to study the behavior of the TLS condition number in the
context of close-to-nongeneric problems. The parameter ep that enables us to vary the
conditioning of the problem. The TLS solution x is computed using an SVD of [A, b]
and Equation (3.14).

For each value of ep , we consider random relative perturbations (∆A,∆b) such that
‖(∆A,∆b)‖F
‖(A,b)‖F

= 10−q . Note that, for this problem, the exact solution x = g(A, b) is known

by construction and, with the notation of Example 1, is equal to Z(1 : n, n + 1)/Z(n +
1, n + 1) . Let x̃ be the computed solution. For several values of (ep, 10−q) , we report
in Table 3.2 the condition number κTLS , the relative forward error, the relative error at
first order, and the “worst case” relative error estimate (that corresponds to the product
of the relative condition number by the relative perturbation of data).

The rows of Table 3.2 are sorted by increasing condition numbers and increasing rela-
tive perturbations. We observe that, when the problem is well-conditioned, the first order
enables us to predict the forward error for all sizes of perturbation considered here. When
the condition number increases, only small perturbations provide consistency between the
forward error and the first order error. This indicates that, the larger the ill-condition of
the problem, the less reliable the first order approach is when large perturbations are con-
sidered. We also notice that, for all experiments, the error estimate based on the condition
number overestimates the first order error with an order of magnitude O(10) , which cor-
responds to the ratio between ‖g′(A, b)‖ × ‖(∆A,∆b)‖2 and ‖g′(A, b).(∆A,∆b)‖2 where
‖g′(A, b)‖ denotes the operator norm of the linear function g′(A, b) .

48

Table 3.2: First order estimation for TLS forward error for various conditioning and
perturbation size.

ep q κTLS
‖x̃−x‖2
‖x‖2

‖g′(A,b).(∆A,∆b)‖2
‖x‖2

κTLS×10−q

‖x‖2

1 · 100 15 1.18 · 100 5.61 · 10−15 5.61 · 10−15 1.00 · 10−13

12 ” 4.82 · 10−12 4.82 · 10−12 1.00 · 10−10

9 ” 5.67 · 10−9 5.67 · 10−9 1.00 · 10−7

6 ” 4.50 · 10−6 4.50 · 10−6 1.00 · 10−4

3 ” 3.54 · 10−3 3.71 · 10−3 1.00 · 10−1

1 · 10−4 15 8.36 · 103 2.29 · 10−11 2.22 · 10−11 7.10 · 10−10

12 ” 8.46 · 10−9 8.46 · 10−9 7.10 · 10−7

9 ” 1.99 · 10−5 1.99 · 10−5 7.10 · 10−4

6 ” 2.10 · 10−2 2.06 · 10−2 7.10 · 10−1

3 ” 8.95 · 100 1.09 · 101 7.10 · 102

1 · 10−8 15 8.36 · 107 2.11 · 10−7 2.22 · 10−7 7.10 · 10−6

12 ” 8.47 · 10−5 8.46 · 10−5 7.10 · 10−3

9 ” 2.31 · 10−1 1.99 · 10−1 7.10 · 100

6 ” 4.39 · 100 2.06 · 102 7.10 · 103

3 ” 9.27 · 100 1.09 · 105 7.10 · 106

1 · 10−12 15 8.36 · 1011 3.61 · 10−3 2.21 · 10−3 7.11 · 10−2

12 ” 7.39 · 100 8.42 · 10−1 7.11 · 101

9 ” 3.62 · 100 1.98 · 103 7.11 · 104

6 ” 4.40 · 100 2.05 · 106 7.11 · 107

3 ” 9.27 · 100 1.08 · 109 7.11 · 1010

49

50

Conclusion and perspectives

In this HDR thesis we presented several research axes to improve speed and reliability of
numerical linear algebra solvers on modern architectures.

We showed that taking advantage of current multicore+GPU systems by designing
“heterogenous-aware” algorithms can be a very efficient way to enhance dense linear alge-
bra computations. In particular, splitting properly the workload between the components
and minimizing the cost of pivoting can lead to fast linear system solvers. Using mixed
precision algorithms is also an appropriate method to exploit fast single precision arith-
metic on current processing units. Working on hybrid solvers is a continuous effort in
our research which is currently performed in the framework of an ongoing PhD thesis
on multiGPU algorithms (Adrien Rémy, started end of 2011 and funded by the French
Ministry of Research).

We also illustrated how randomization techniques can accelerate the solution of dense
linear systems on multicore architectures possibly accelerated by GPUs. We considered
the example of dense symmetric indefinite systems but we also applied this method to
general dense systems in [13]. An extension to sparse systems is also under investigation
(collaboration with Dr Xiaoye Sherry Li - Lawrence Berkeley National Laboratory - USA)
but we must be careful about the possible fill-in introduced by butterfly transformations in
sparse matrices. The resulting solvers are based on a computationally cheap randomization
technique followed by an efficient factorization without pivoting. In addition to providing
us with satisfying performance results, this method gives accurate results. Our current task
regarding randomization kernels concerns the progressive integration into public domain
libraries PLASMA and MAGMA. We point out that randomized algorithms represent a
hot topic in scientific computing in general and in numerical linear algebra in particular.
In addition to recent publications in ACM TOMS and IPDPS’12, we organized in June
2012 a minisymposium on this subject at the SIAM Conference on Applied Linear Algebra
(Valencia) and also we gave two invited plenary talks in recent conferences (ACM HPC’12
- March 2012 in Orlando and Workshop on solutions of indefinite systems - April 2012 in
Eindhoven).

Providing error analysis tools is crucial for HPC applications and this corresponds to
a strong demand from physicists. With the rewritting of the old generation libraries, the
routines based on backward error analysis that were developed in (Sca)LAPACK must be
adapted. Moreover, some approaches as the computation of problem conditioning were not
considered in these libraries. Also assessing numerical quality is essential when combined
with new algorithms (e.g. randomized) for which there are few existing results on stability
in the literature. The computable expressions and routines for the conditioning of least
squares problems that we described in this manuscript fill this gap. These formulas can

51

also be applied to linear systems, which are special cases of overdetermined least squares.

Subsequent to the work described in this HDR thesis, we give below four examples of
research directions.

Getting closer to physical applications

One of the main requirement for our research to be useful and visible is to be applied to
physical applications. In particular we plan to apply some of the concepts detailed in this
manuscript to computational fluid dynamics. Our motivation is to develop an efficient
solver for the numerical simulations of incompressible fluid flows on heterogeneous parallel
architectures. We focus here on the solution of large sparse linear systems coming from
the discretization of Helmholtz and Poisson equations that represent the major part of the
computational time for solving the Navier-Stokes equations. The discretization scheme
that we use for solving these equations results in block-tridiagonal systems that are difficult
to solve efficiently on heterogenous platforms. We are currently investigating techniques
to accelerate variants of Thomas algorithms using vectorization techniques [42] or cyclic
reduction [67]. First results using this approach are very promising (see Figure 3.4 that
shows an acceleration of more than 50%).

Figure 3.4: Performance of vectorized Thomas algorithm.

The algorithms developed for this research will be validated on physical applications
studied at LIMSI1 in the area of numerical simulations of incompressible flows [83], the
criteria for this evaluation being based on accuracy and performance. This research is the
purpose of a PhD thesis (Yushan Wang, started end of 2011, and funded by Digiteo2).

Still more effort on numerical libraries

The method of error analysis based on evaluating condition numbers that we presented
in Section 3 enables us to evaluate the numerical quality of least-squares/linear system

1Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur, http://www.limsi.fr/
2http://www.digiteo.fr

52

solutions at a very affordable computational cost. However, as mentioned at the end of
Section 3.2.3.2, there remains important issues for the performance of some calculations
on current architectures like GPUs. In particular having efficient kernels for SVD or eigen-
value solvers on GPUs remains crucial for some computations (note that for distributed
systems using MPI, efficient eigenvalue or SVD solvers can be found in [58]). We can
illustrate this by comparing in Figure 3.5 the time for computing an LLS solution and its
conditioning using LAPACK and MAGMA. We observe that MAGMA provides faster so-
lution and condition number but, contrary to LAPACK, the computation of the condition
number is slower than the time for the solution, in spite of a smaller flops count.

LLS solution MAGMA
Exact condition number MAGMA
Exact condition number LAPACK
LLS solution LAPACK

T
im

e
(s
)

Problem size (m× n)

9984× 2496 14080× 3520 17280× 4320 19968× 4992 22272× 5568 24448× 6112 26368× 6592
0

5

10

15

20

25

30

Figure 3.5: Time for LLS solution and condition number

This confirms the interest of randomized algorithms also when applied to condition
estimation. For instance the statistical estimates described in Section 3.2.2 would be
useful in numerical libraries especially in the changing HPC landscape where existing
algorithms might rapidly become sub-optimal when implemented on new architectures.
Developing statistical condition estimates and integrating them into libraries is the object
of an ongoing collaboration with Pr Alan Laub - University of California Los Angeles
(UCLA) - USA.

Addressing very large size simulations

A major challenge for the randomized algorithms presented in Chapter 2 is to be able
to solve very large problems. As a matter of fact, large-scale linear algebra solvers from
standard parallel distributed libraries like ScaLAPACK [21] often suffer from expensive
inter-node communication costs. An important requirement is to be able to schedule these
algorithms dynamically on highly distributed parallel systems. In particular we must point
out that even though randomizing removes the communication due to pivoting, applying
recursive butterflies also generates communication, especially if we use multiple nodes
to perform the randomization. This communication must be of course minimized or at
least overlapped by computation. Below are very promising preliminary performance
results for SRBT obtained on a cluster of 16 nodes, each node consisting of 2 quadcore
processors. These very recent results have been obtained using the DAGUE runtime

53

system [23]. We observe in Figure 3.6 that the performance for LDL T is similar to that
of the Cholesky algorithm, and close to the practical peak of the platform. This work
on efficiently implementing randomized algorithms on clusters of multicore is an ongoing
collaboration with University of Tennessee.

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16
 0

 200

 400

 600

 800

 1000

 1200

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

G
F

L
O

P
/s

e
c

Number of nodes

LDL
T
, SRBT, Cholesky -- Strong Scaling, Matrix Size:46080

DGEMM peak

Cholesky

LDL
T

LDL
T
+SRBT

Figure 3.6: Performance of SRBT on clusters of multicore (46080x46080 matrix)

More applications for error analysis tools

We mentioned in Section 3.1 that the method based on condition numbers applies mainly
to linear algebra problems. A track of research would be to combine our approach with
other existing techniques, like for instance models of error propagation based on stochastic
arithmetic [70]. It would then be possible, depending on the type of problem and of the
existence of a condition estimate, to propose a specific algorithm. This would require
an optimization of the routines for error propagation simulations that usually suffer from
large overhead. A first step for this research would consist of comparing the accuracy and
computational times between the different approaches. In a second phase, the study would
be extended to nonlinear problems. Here again having industrial applications is essential
and we plan to apply numerical quality tools to HPC applications developed at ONERA
in aerodynamics and energetics and for which it is crucial to have an efficient numerical
validation. The ultimate goal is to develop a specific library for error estimation so that
physicits can control in a systematic way roundoff errors in linear algebra calculations but
also can optimize the parameters related to the convergence of their iterative solvers.

54

Bibliography

[1] Basic Linear Algebra Subprograms Technical Forum Standard, Int. J. of High Per-
formance Computing Applications 16 (2002), no. 1.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK users’
guide, 3 ed., SIAM, Philadelphia, 1999.

[3] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer, Communication-Avoiding
QR decomposition for GPUs, Tech. report, 2011, LAPACK Working Note 240, pro-
ceedings of IPDPS’11.

[4] M. Arioli, M. Baboulin, and S. Gratton, A partial condition number for linear least-
squares problems, SIAM J. Matrix Anal. and Appl. 29 (2007), no. 2, 413–433.

[5] M. Arioli, J. W. Demmel, and I. S. Duff, Solving sparse linear systems with sparse
backward error, SIAM J. Matrix Anal. and Appl. 10 (1989), no. 2, 165–190.

[6] C. Ashcraft, R. G. Grimes, and J. G. Lewis, Accurate symmetric indefinite linear
equation solvers, SIAM J. Matrix Anal. and Appl. 20 (1998), no. 2, 513–561.

[7] A. Avron, P. Maymounkov, and S. Toledo, Blendenpick: Supercharging LAPACK’s
least-squares solvers, SIAM Journal on Scientific Computing 32 (2010), 1217–1236.

[8] M. Baboulin, D. Becker, and J. Dongarra, A parallel tiled solver for dense symmet-
ric indefinite systems on multicore architectures, Proceedings of IEEE International
Parallel & Distributed Processing Symposium (IPDPS 2012), 2012, pp. 14–24.

[9] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek,
and S. Tomov, Accelerating scientific computations with mixed precision algorithms,
Computer Physics Communications 180 (2009), no. 12, 2526–2533.

[10] M. Baboulin, S. Donfack, J. Dongarra, L. Grigori, A. Rémy, and S. Tomov, A
class of communication-avoiding algorithms for solving general dense linear systems
on cpu/gpu parallel machines, International Conference on Computational Science
(ICCS 2012), Procedia Computer Science, vol. 9, Elsevier, 2012, pp. 17–26.

[11] M. Baboulin, J. Dongarra, J. Demmel, S. Tomov, and V. Volkov, Enhanc-
ing the performance of dense linear algebra solvers on gpus in the magma
project, Poster at Supercomputing (SC’08), Austin USA, November 15, 2008,
http://www.lri.fr/ baboulin/SC08.pdf.

55

[12] M. Baboulin, J. Dongarra, S. Gratton, and J. Langou, Computing the conditioning
of the components of a linear least-squares solution, Numerical Linear Algebra with
Applications 16 (2009), no. 7, 517–533.

[13] M. Baboulin, J. Dongarra, J. Herrmann, and S. Tomov, Accelerating linear sys-
tem solutions using randomization techniques, ACM Trans. Math. Softw. 39 (2012),
no. 2.

[14] M. Baboulin, J. Dongarra, and S. Tomov, Some issues in dense linear algebra for
multicore and special purpose architectures, 9th International Workshop on State-of-
the-Art in Scientific and Parallel Computing (PARA’08), Lecture Notes in Computer
Science, vol. 6126-6127, Springer-Verlag, 2008.

[15] M. Baboulin and S. Gratton, Using dual techniques to derive componentwise and
mixed condition numbers for a linear function of a linear least squares solution, BIT
Numerical Mathematics 49 (2009), no. 1, 3–19.

[16] , A contribution to the conditioning of the total least squares problem, SIAM
Journal on Matrix Analysis and Applications 32 (2011), no. 3, 685–699.

[17] M. Baboulin, S. Gratton, R. Lacroix, and A. J. Laub, Efficient computation of
condition estimates for linear least squares problems, Research Report RR-8065,
INRIA, 2012, Submitted to Numerical Algorithms.

[18] J.-C. Bajard, P. Langlois, D. Michelucci, G. Morin, and N. Revol, Floating-point
geometry: toward guaranteed geometric computations with approximate arithmetics,
SPIE Optics & Photonics 2008 Symposium (San Diego, CA, USA), vol. 7074, 2008.

[19] D. Becker, M. Baboulin, and J. Dongarra, Reducing the amount of pivoting in sym-
metric indefinite systems, 9th International Conference on Parallel Processing and
Applied Mathematics (PPAM 2011) (Heidelberg) (Roman Wyrzykowski et. al., ed.),
Lecture Notes in Computer Science, vol. 7203, Springer-Verlag, 2012, pp. 133–142.

[20] Å. Björck, Numerical methods for least squares problems, SIAM, Philadelphia, 1996.

[21] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley, ScaLAPACK users’ guide, SIAM, Philadelphia, 1997.

[22] S. Blackford and J. Dongarra, Installation Guide for LAPACK, Tech. report, 1999,
LAPACK Working Note 41, revised version 3.0.

[23] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Herault,
Pierre Lemarinier, and Jack J. Dongarra, DAGuE: A generic distributed
DAG engine for high performance computing, Parallel Computing (2011),
http://dx.doi.org/10.1016/j.parco.2011.10.003.

[24] J. R Bunch and L. Kaufman, Some stable methods for calculating inertia and solving
symmetric linear systems, Math. Comput. 31 (1977), 163–179.

56

[25] J. R Bunch and B. N. Parlett, Direct methods for solving symmetric indefinite sys-
tems of linear equations, SIAM J. Numerical Analysis 8 (1971), 639–655.

[26] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. Tomov, The im-
pact of multicore on math software, (2006), In Proceedings of PARA 2006, Workshop
on state-of-the art in scientific computing.

[27] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, A class of parallel tiled linear
algebra algorithms for multicore architectures, Parallel Computing 35 (2009), 38–53.

[28] Y. Cao and L. Petzold, A subspace error estimate for linear systems, SIAM J. Matrix
Anal. and Appl. 24 (2003), 787–801.

[29] S. Chandrasekaran and I. C. F. Ipsen, On the sensitivity of solution components
in linear systems of equations, SIAM J. Matrix Anal. and Appl. 16 (1995), no. 1,
93–112.

[30] B. Chapman, F. Desprez, G. R. Joubert, A. Lichnewsky, F. Peters, and T. Priol,
Parallel Computing: From Multicores and GPUs to Petascale, IOS Press, 2010.

[31] F. Cucker, H. Diao, and Y. Wei, On mixed and componentwise condition numbers
for Moore-Penrose inverse and linear least squares problems, Mathematics of Com-
putation 76 (2007), no. 258, 947–963.

[32] J. Demmel, Y. Hida, W. Kahan, X. S. Li, S. Mukherjee, and E. J. Riedy, Error
bounds from extra-precise iterative refinement, ACM Trans. Math. Softw. 32 (2006),
no. 2, 325–351.

[33] J. Demmel, Y. Hida, X. S. Li, and E. J. Riedy, Extra-precise iterative refinement for
overdetermined linear least squares problems, ACM Trans. Math. Softw. 35 (2009),
no. 4, 1–32.

[34] J. W. Demmel, Applied numerical linear algebra, SIAM, 1997.

[35] J. W. Demmel, J. R. Gilbert, and X. S. Li, An asynchronous parallel supernodal
algorithm for sparse Gaussian elimination, SIAM J. Matrix Anal. and Appl. 20
(1999), no. 4, 915–952.

[36] I. Dimov, Monte carlo methods for applied scientists, Word Scientific, 2008.

[37] S. Donfack, L. Grigori, and A. K. Gupta, Adapting communication-avoiding LU
and QR factorizations to multicore architectures, Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, IEEE, 2010, pp. 1–10.

[38] J. Dongarra, I. Duff, D. Sorensen, and H. van der Vorst, Numerical linear algebra
for high-performance computers, SIAM, 1998.

[39] J. Dongarra, M. Faverge, H. Ltaief, and P. Luszcsek, Achieving numerical accu-
racy and high performance using recursive tile LU factorization, Tech. report, 2011,
LAPACK Working Note 259.

57

[40] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct methods for sparse matrices,
Clarendon Press, Oxford, 1986.

[41] L. Eldén, Perturbation Theory for the Least Squares Problem with Linear Equality
Constraints, SIAM J. Numerical Analysis 17 (1980), 338–350.

[42] J. Falcou and J. Sérot, E.V.E.: An object oriented SIMD library, Scalable Comput-
ing: Practice and Experience 6 (2005), no. 4, 31–41.

[43] A. J. Geurts, A contribution to the theory of condition, Numerische Mathematik 39
(1982), 85–96.

[44] G. Golub and J. Wilkinson, Note on the iterative refinement of least squares solution,
Numerische Mathematik 9 (1966), no. 2, 139–148.

[45] G. H. Golub and C. F. Van Loan, An analysis of the Total Least Squares problem,
SIAM J. Numerical Analysis 17 (1980), 883–893.

[46] , Matrix computations, The Johns Hopkins University Press, Baltimore, 1996,
Third edition.

[47] N. I. M. Gould, J. A. Scott, and Y. Hu, A numerical evaluation of sparse solvers for
symmetric systems, ACM Trans. Math. Softw. 33 (2007), no. 2, 10:1–10:32.

[48] A. Graham, Kronecker products and matrix calculus with application, Wiley, New
York, 1981.

[49] S. Gratton, On the condition number of linear least squares problems in a weighted
Frobenius norm, BIT Numerical Mathematics 36 (1996), no. 3, 523–530.

[50] J. F. Grcar, Adjoint formulas for condition numbers applied to linear and indefinite
least squares, Technical Report LBNL-55221, Lawrence Berkeley National Labora-
tory, 2004.

[51] L. Grigori, J. Demmel, and H. Xiang, CALU: a communication optimal LU factor-
ization algorithm, SIAM J. Matrix Anal. and Appl. 32 (2011), 1317–1350.

[52] T. Gudmundsson, C. S. Kenney, and A. J. Laub, Small-sample statistical estimates
for matrix norms, SIAM J. Matrix Anal. and Appl. 16 (1995), 776–792.

[53] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn, Formal
Linear Algebra Methods Environment, ACM Trans. Math. Softw. 27 (2001), no. 4,
422–455.

[54] F. G. Gustavson, Recursion leads to automatic variable blocking for dense linear-
algebra algorithms, IBM Journal of Research and Development 41 (1997), no. 6,
737–755.

[55] W. W. Hager, Condition estimates, SIAM J. Sci. Statist. Comput. 5 (1984), no. 2,
311–316.

58

[56] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions, SIAM
Review 53 (2011), 217–288.

[57] P. Hénon, P. Ramet, and J. Roman, On using an hybrid MPI-Thread programming
for the implementation of a parallel sparse direct solver on a network of SMP nodes,
In PPMA’05, LNCS 3911 (2005), 1050–1057.

[58] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A scalable and flexible toolkit
for the solution of eigenvalue problems, ACM Trans. Math. Softw. 31 (2005), no. 3,
351–362.

[59] N. J. Higham, A survey of componentwise perturbation theory in numerical linear
algebra, In W. Gautschi editor, Mathematics of Computation 1943-1993: A Half
Century of Computational Mathematics, volume 48 of Proceedings of Symposia in
Applied Mathematics (1994), 49–77, American Mathematical Society, Providence,
RI, USA.

[60] , Accuracy and stability of numerical algorithms, 2 ed., SIAM, Philadelphia,
2002.

[61] S. Van Huffel and J. Vandewalle, The total least squares problem: computational
aspects and analysis, SIAM, Philadelphia, 1991.

[62] Intel, Math Kernel Library (MKL), http://www.intel.com/software/products/
mkl/.

[63] I. C. F. Ipsen, Numerical matrix analysis: Linear systems and least squares, SIAM,
Philadelphia, 2009.

[64] K. Kasichayanula, D. Terpstra, P. Luszczek, S. Tomov, S. Moore, and G. Peterson,
Power aware computing on GPUs, SAAHPC ’12, Argonne, IL, 2012.

[65] C. S. Kenney and A. J. Laub, Small-sample statistical condition estimates for general
matrix functions, SIAM J. Sci. Comput. 15 (1994), 36–61.

[66] C. S. Kenney, A. J. Laub, and M. S. Reese, Statistical condition estimation for linear
least squares, SIAM J. Matrix Anal. and Appl. 19 (1998), no. 4, 906–923.

[67] H. Kim, S. Wu, L. Chang, and W. Hwu, A scalable tridiagonal solver for GPUs,
ICPP ’11 Proceedings of the 2011 International Conference on Parallel Processing,
ACM, 2011, pp. 444–453.

[68] P. Kornerup, V. Lefèvre, N. Louvet, and J.-M. Muller, On the computation of
correctly-rounded sums, IEEE Transactions on Computers 61 (2012), no. 3, 289–
298.

[69] J. Kurzak and J. Dongarra, Implementing linear algebra routines on multi-core pro-
cessors with pipelining and a look ahead, Tech. report, 2006, LAPACK Working Note
178.

59

[70] J.-L. Lamotte, J.-M. Chesneaux, and F. Jézéquel, Cadna c: A version of cadna for
use with c or c++ programs, Computer Physics Communications 181 (2010), no. 11,
1925–1926.

[71] Philippe Langlois, Matthieu Martel, and Laurent Thévenoux, Accuracy versus time:
a case study with summation algorithms, 4th International Workshop on Parallel and
Symbolic Computation (PASCO’10) (New York, NY, USA), ACM, 2010, pp. 120–
130.

[72] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. J. Dongarra,
Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit
accuracy, Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 2006.

[73] M. W. Mahoney, Randomized algorithms for matrices and data, Foundations and
Trends in Machine Learning 3 (2011), no. 2, 123–224.

[74] C. B. Moler, Iterative refinement in floating point, J. ACM 14 (1967), no. 2, 316–321.

[75] R. Nath, S. Tomov, and J. Dongarra, An improved MAGMA GEMM for Fermi
GPUs, International Journal of High Performance Computing Applications 24
(2010), no. 4, 511–515.

[76] NVIDIA, NVIDIA CUDA C Programming Guide, 04/16/2012, Version 4.2.

[77] W. Oettli and W. Prager, Compatibility of approximate solution of linear equations
with given error bounds for coefficients and right-hand sides, Numerische Mathe-
matik 6 (1964), 405–409.

[78] University of Tennessee, PLASMA users’ guide, parallel linear algebra software for
multicore architectures, version 2.3, 2010.

[79] J. M. Ortega and C. H. Romine, The ijk forms of factorization methods II. Parallel
systems, Parallel Computing 7 (1988), no. 2, 149–162.

[80] C. Paige and Z. Strakos̆, Core problems in linear algebraic systems, SIAM J. Matrix
Anal. and Appl. 27 (2006), no. 3, 861–875.

[81] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations
and sparse least squares, ACM Trans. Math. Softw. 8 (1982), 43–71.

[82] D. S. Parker, Random butterfly transformations with applications in computa-
tional linear algebra, Technical Report CSD-950023, Computer Science Department,
UCLA, 1995.

[83] B. Podvin, Y. Fraigneau, F. Lusseyran, and P. Gougat, A reconstruction method for
the flow past an open cavity, J. Fluids Engineerings 128 (2006), 531–540.

[84] G. Quintana-Orti, E. S. Quintana-Orti, R. A. van de Geijn, F. G. van Zee, and
E. Chan, Programming algorithms-by-blocks for matrix computations on multi-
threaded architectures, ACM Trans. Math. Softw. 36 (2009), no. 3, 1–26.

60

[85] J. Rice, A theory of condition, SIAM J. Numerical Analysis 3 (1966), 287–310.

[86] S. Rump, Fast and parallel interval arithmetic, BIT Numerical Mathematics 39
(1999), no. 3, 534–554.

[87] , Verification methods: Rigorous results using floating-point arithmetic, Acta
Numerica 19 (2010), 287–449.

[88] O. Schenk and K. Gärtner, On fast factorization pivoting methods for symmetric
indefinite systems, Elec. Trans. Numer. Anal. 23 (2006), 158–179.

[89] R. D. Skeel, Iterative refinement implies numerical stability for Gaussian elimina-
tion, Math. Comput. 35 (1980), no. 151, 817–832.

[90] D. C. Sorensen, Analysis of pairwise pivoting in Gaussian elimination, IEEE Trans.
Comput. 34 (1984), 274–278.

[91] G. W. Stewart, Introduction to matrix computations, Academic Press, 1973.

[92] P. E. Strazdins, A dense complex symmetric indefinite solver for the Fujitsu AP3000,
Technical Report TR-CS-99-01, The Australian National University, 1999.

[93] The Numerical Algorithms Group, NAG library manual, Mark 21, NAG, 2006.

[94] S. Tomov, J. Dongarra, and M. Baboulin, Towards dense linear algebra for hybrid
GPU accelerated manycore systems, Parallel Computing 36 (2010), no. 5&6, 232–
240.

[95] S. Tomov, R. Nath, and J. Dongarra, Accelerating the reduction to upper Hessen-
berg, tridiagonal, and bidiagonal forms through hybrid GPU-based computing, Par-
allel Computing 36 (2010), no. 12, 645–654.

[96] L. N. Trefethen and R. S. Schreiber, Average-case stability of Gaussian elimination,
SIAM J. Matrix Anal. and Appl. 11 (1990), no. 3, 335–360.

[97] A. Turing, Rounding-off errors in matrix processes, Quart. J. Mech. and Applied
Math. 1 (1948), 287–308.

[98] V. Volkov and J. Demmel, Using GPUs to accelerate linear alge-
bra routines, Poster at PAR lab winter retreat, January 9, 2008,
http://www.eecs.berkeley.edu/˜volkov/volkov08-parlab.pdf.

[99] V. Volkov and J. W. Demmel, LU, QR and Cholesky factorizations using vector ca-
pabilities of GPUs, Technical Report UCB/EECS-2008-49, University of California,
Berkeley, 2008, Also LAPACK Working Note 202.

[100] P.-Å. Wedin, Perturbation theory for pseudo-inverses, BIT 13 (1973), 217–232.

[101] J. H. Wilkinson, Rounding errors in algebraic processes, vol. 32, Her Majesty’s Sta-
tionery Office, London, 1963.

61

[102] I. Yamazaki, S. Tomov, and J. Dongarra, One-sided dense matrix factorizations on
a multicore with multiple GPU accelerators, International Conference on Compu-
tational Science (ICCS 2012), Procedia Computer Science, vol. 9, Elsevier, 2012,
pp. 37–46.

[103] A. YarKhan, J. Kurzak, and J. Dongarra, QUARK users guide: QUeueing And
Runtime for Kernels, Technical Report ICL-UT-11-02, University of Tennessee, In-
novative Computing Laboratory, 2011.

[104] T. J. Ypma, Historical development of the Newton–Raphson method, SIAM Review
37 (1995), no. 4, 531–551.

[105] M. Zelen, Linear estimation and related topics, Survey of numerical analysis (J.Todd,
ed.), McGraw-Hill, New York, 1962, pp. 558–584.

62

