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SUMMARY

This paper studies the performance of different algorithms for solving a dense symmetric indefinite linear
system of equations on multicore CPUs with a Graphics Processing Unit (GPU). To ensure the numerical sta-
bility of the factorization, pivoting is required. Obtaining high performance of such algorithms on the GPU
is difficult because all the existing pivoting strategies lead to frequent synchronizations and irregular data
accesses. Until recently, there has not been any implementation of these algorithms on a hybrid CPU/GPU
architecture. To improve their performance on the hybrid architecture, we explore different techniques to
reduce the expensive data transfer and synchronization between the CPU and GPU, or on the GPU (e.g.,
factorizing the matrix entirely on the GPU or in a communication-avoiding fashion). We also study the per-
formance of the solver using iterative refinements along with the factorization without pivoting combined
with the preprocessing technique based on random butterfly transformations, or with the mixed-precision
algorithm where the matrix is factorized in single precision. This randomization algorithm only has a proba-
bilistic proof on the numerical stability, and for this paper, we only focused on the mixed-precision algorithm
without pivoting. However, they demonstrate that we can obtain good performance on the GPU by avoid-
ing the pivoting and using the lower precision arithmetics, respectively. As illustrated with the application
in acoustics studied in this paper, in many practical cases, the matrices can be factorized without pivoting.
Because the componentwise backward error computed in the iterative refinement signals when the algorithm
failed to obtain the desired accuracy, the user can use these potentially unstable but efficient algorithms in
most of the cases and fall back to a more stable algorithm with pivoting only in the case of the failure.
Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A symmetric matrix A is called indefinite when the quadratic form xTAx can take both positive
and negative values. Dense linear systems of equations with symmetric indefinite matrices appear
in many studies of physics, including physics of structures, acoustics, and electromagnetism. For
instance, such systems arise in the linear least-squares problem for solving an augmented system
[1, p. 77], or in the electromagnetism where the discretization by the boundary element method
results in linear systems with dense complex symmetric (non-Hermitian) matrices [2]. The efficient
solution of these linear systems demands a high-performance implementation of a dense symmet-
ric indefinite solver that can efficiently use the current hardware architecture. In particular, the use
of accelerators has become pervasive in scientific computing because of their high-performance
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capabilities and low-energy consumptions. For example, in terms of the floating-point operation per
second, or flop/s in short, a single K40 NVIDIA GPU has a double precision peak performance
of 1689 Gflop/s for a thermal design power of 235 W. According to benchmarks in the MAGMA
library [3], optimized large-dense matrix computations, for example, matrix–matrix multiplications,
reach 1200 Gflop/s for a power draw of about 200 W, that is, ! 6Gflop/W. In contrast, two Sandy
Bridge E5-2670 CPUs have about the same thermal design power (2 " 115 D 230W) as the K40
but for a peak of 333 Gflop/s, which translates to only 1.4 Gflop/W for the Sandy Bridge CPU. To
achieve the high performance, however, the algorithms must be designed for high parallelism and
high “flops to data” ratio while maintaining a low number of flops and exploiting the hardware fea-
tures of the hybrid CPU/GPU architecture. A dense symmetric indefinite solver that can efficiently
exploit the GPU’s high-computing power would be useful for many physical applications.

To solve a symmetric indefinite linear system of equations, Ax D b, a classical method
decomposes the matrix A into an LDLT factorization,

PAP T D LDLT ; (1)

where L is unit lower triangular, D is block diagonal with either 1-by-1 or 2-by-2 diagonal blocks,
and P is a permutation matrix to ensure the numerical stability of the factorization. Then the
solution x is computed by successively solving the linear systems with the coefficient matrices
L, D, and LT along with the permutation. The strategies to compute the permutation matrix
P for the LDLT factorization include complete pivoting (Bunch–Parlett algorithm) [4], partial
pivoting (Bunch–Kaufman algorithm) [5], rook pivoting (bounded Bunch–Kaufman) [6, p. 523],
and fast Bunch–Parlett [6, p. 525]. In particular, the Bunch–Kaufman and rook pivoting strate-
gies are implemented in LAPACK [7], a set of dense linear algebra routines on multicore CPUs,
that are extensively used in many scientific and engineering simulations. The routines implemented
in LAPACK are based on block algorithms that can exploit the memory hierarchy on modern
architectures, using BLAS-3 matrix operations for most of its floating-point operations.

Another promising method for solving a symmetric indefinite linear system is the Aasen’s
method [8], which computes the LTLT factorization of the matrix A,

PAP T D LTLT ; (2)

where T is now a symmetric tridiagonal matrix. The algorithm requires 1
3n
3 C O.n2/ flops

[9, p. 166], similarly to the LDLT factorization. A block algorithm for computing the LTLT fac-
torization was also proposed [10]. Although the block implementation performs slightly more flops
(i.e., an additional rank-1 update of the trailing submatrix, Section 2.3), it can exploit a modern
computer’s memory hierarchy and obtain performance similar to the Bunch–Kaufman algorithm
implemented in LAPACK [10].

To maintain numerical stability, the pivoting techniques mentioned earlier involve between O.n2/
and O.n3/ comparisons to search for pivots and possible interchanges of selected columns and
rows. Hence, factorizing each column of the matrix requires the synchronization for selecting the
pivot and the data movement for exchanging the columns and rows, which have become signifi-
cantly more expensive compared with the arithmetic operations on modern computers. Furthermore,
because only either the upper or lower triangular part of the matrix A is stored, the symmetric
pivoting‡ requires irregular data access (i.e., some parts of the pivot column may be stored as
the transpose of the corresponding part of the row), which dramatically increases the cost of the
data movement. Partially because of these performance challenges, ScaLAPACK [11], which is the
extension of LAPACK for distributed-memory machines, does not support the symmetric indefinite
factorization, and until recently, there were no implementations of the algorithm that could exploit a
GPU§. This motivated our efforts to review the different factorization algorithms, develop their effi-
cient implementations on multicores with a GPU to address their current limitations, and show the

‡To maintain the symmetry, both columns and rows must be swapped.
§A Bunch–Kaufman implementation became recently available in the cuSolver library as part of the CUDA Toolkit v7.5
from NVIDIA.
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new state-of-the-art outlook for this important problem. For example, recently, a communication-
avoiding variant of the Aasen’s algorithm was proposed [12]. However, the pivoting must still be
applied symmetrically, leading to expensive irregular data accesses. Another technique studied in
this paper is a symmetric version of random butterfly transformations (RBT) [13] on the GPU. RBT
can be combined with an LDLT factorization to probabilistically improve the stability of the fac-
torization without pivoting. The performance of RBT for symmetric indefinite systems has been
studied on multicore systems [14] and distributed-memory systems [15], but its performance has
not been investigated on a GPU. Finally, we study the potential of a mixed-precision algorithm to
improve the performance of the solver, where the matrix is first factorized in single precision, and
the solution is computed through iterative refinement.

This paper is organized as follows. Section 2 describes the three algorithms for solving dense
symmetric indefinite systems (i.e., the Bunch–Kaufman and Aasen’s algorithms, and the RBTs) and
their implementations on the hybrid CPU/GPU architecture. It also explains how we can use mixed
precision to accelerate the solver. Section 3 shows our experimental results, where Sections 3.1
and 3.2 present the performance and numerical results for random matrices and two acoustic scat-
tering problems, respectively, while Section 3.3 gives performance results of the mixed-precision
algorithm applied to random matrices without pivoting. Section 4 contains concluding remarks. In
this paper, we use ai;j and aj to denote the .i; j /-th entry and the j -th column of the matrix A,
respectively, while Ai1Wi2;j1Wj2 is the submatrix consisting of the i1-th through the i2-th rows and
the j1-th through the j2-th columns of A. We also use AI;J and AI1WI2;J1WJ2 to denote the .I; J /-
th block and the submatrix consisting of the I1-th through the I2-th block rows and J1-th through
the J2-th block columns of A, where the block size is nb and the number of block columns/rows in
A is nt (i.e., nt D d nnb e).

This paper extends our previous proceedings paper [16] presented at the PPAM 2015 confer-
ence. In this extended paper, we describe the current general trends in designing efficient numerical
linear algebra libraries on manycore accelerated architectures (Section 2.1) before presenting our
specific design and optimization of the symmetric indefinite solvers for the GPU architectures
(Section 2.2). We also include the time to obtain the solution while the previous paper only showed
the factorization time and give more details about the acoustic scattering problems studied in the
paper (Sections 3.1 and 3.2, respectively). Finally, we describe our implementation and its perfor-
mance of the mixed-precision algorithm that may improve the performance of the solver in practice
(Sections 2.5 and 3.3).

2. SYMMETRIC INDEFINITE FACTORIZATIONS WITH A GPU

In this section, we describe the existing algorithms for solving a dense symmetric indefinite linear
system of equations. First, we describe the general principles for designing an efficient dense linear
algebra algorithm on heterogeneous systems, and then, we concentrate on the specifics for the design
and optimization of symmetric indefinite solvers for GPU architectures, along with discussion on
what design principles can (or cannot) be applied for these solvers.

2.1. Programming linear algebra solvers on GPUs

The LAPACK’s programming model [7] is based on expressing algorithms in terms of BLAS calls.
Subsequently, LAPACK can achieve high efficiency, provided that highly efficient BLAS imple-
mentations are provided on the target machine, for example, by the manufacturer. Since the 1980s,
this model has turned out to be very successful for cache-based shared-memory vector and parallel
processors with multi-layered memory hierarchies.

To account for the deep memory hierarchies today, efficient BLAS implementations feature
multilevel blocking where, for example, the Level 3 matrix–matrix computations are split hierar-
chically into blocks that fit into corresponding levels of the memory hierarchy [17]. In effect, a
programming model based on BLAS is still an effective model for exploiting the deep memory
hierarchies at the present time [18]. However, the resulting parallelism is fork-join – a sequence
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of BLAS calls is implicitly synchronized after each individual BLAS call (join), although the rou-
tines by themselves run in parallel (fork). This brings synchronization overheads and idle time for
some processors/cores, especially on the highly parallel current and future heterogeneous system
designs [19], motivating the search for improved models where the BLAS routines are broken into
small tasks and properly scheduled for execution over the heterogeneous hardware components.

The typical hybrid algorithm splits the overall computation into small tasks to execute on the
CPU, and large update tasks to execute on the accelerator [3, 20–22]. For instance, in LU and QR
factorizations, each step is split into a panel factorization of nb columns, followed by a trailing
matrix update. The panel factorization is assigned to the CPU and includes such decisions as select-
ing the maximum pivot in each column or computing a Householder reflector for each column.
The trailing matrix update is assigned to the accelerator and involves some form of matrix–matrix
multiply. The block size, nb , can be tuned to adjust the amount of work on the CPU versus on the
accelerator. Optimally, during the trailing matrix update, a look-ahead panel is updated first and sent
back to the CPU. Asynchronous data transfers are used to copy data between the CPU and accel-
erator, while the accelerator continues computing. The CPU performs the next panel factorization,
while the accelerator continues with the remainder of the trailing matrix update. In this way, the
inputs for the next trailing matrix update are ready when the current update finishes. The goal is to
keep the accelerator always busy, which has the highest performance.

Unfortunately, the pivoting required to maintain the numerical stability of the symmetric indef-
inite factorization leads to the fork-join and prohibits the look-ahead as we describe in the rest of
this section.

2.2. Bunch–Kaufman algorithm

One of the most widely used algorithms for solving a symmetric indefinite linear system is based on
the block LDLT factorization with the Bunch–Kaufman algorithm [5], which is also implemented
in LAPACK (i.e., xSYTRF). The pseudo-code of the algorithm is shown in Figure 1(a), which is
referred to as a right-looking algorithm because after the set of nb columns, commonly referred to as
panel, are factorized, the panel is used to update the trailing submatrix, which is on the right of the
panel. To select the pivot at each step of the factorization, it scans at most two columns of the trailing
submatrix, and depending on the numerical values of the scanned matrix entries, it uses either a
1-by-1 or a 2-by-2 pivot. This algorithm has satisfactory backward stability [23, p. 219]. Then a
variant of the Bunch–Kaufman algorithm, also called “rook pivoting,” was proposed in [6] that
provides a better accuracy by bounding the triangular factors. However, depending on the matrix,
the rook pivoting method could perform O.n3/ comparisons, as opposed to the O.n2/ comparisons
of the Bunch–Kaufman algorithm. Hence, in this paper, we focus on the Bunch–Kaufman algorithm
as a baseline for our performance comparison.

Our implementation of the Bunch–Kaufman algorithm on the hybrid architecture is based on
BLAS and LAPACK task representations (as described in Section 2.1), where the BLAS and
LAPACK calls on the CPU are replaced with the corresponding GPU kernels (Figure 2). In addi-
tion, our first implementation is based on a hybrid CPU/GPU programming paradigm where the
panel is factorized on the CPU (e.g., using the multithreaded MKL library [24]), while the trailing
submatrix is updated on the GPU. This is often an effective programming paradigm for many of the
LAPACK subroutines because the panel factorization is based on BLAS-1 or BLAS-2, which can be
efficiently implemented on the CPU, while BLAS-3 is used for the submatrix updates, which exhibit
high-data parallelism and can be efficiently implemented on the GPU [3, 25]. Unfortunately, at each
step of the panel factorization, the Bunch–Kaufman algorithm may select the pivot from the trailing
submatrix. Hence, although copying the panel from the GPU to the CPU can be overlapped with the
update of the rest of the trailing submatrix on the GPU, the look-ahead – a standard optimization
technique to overlap the panel factorization on the CPU with the trailing submatrix update on the
GPU – is prohibited. In addition, when the pivot column is on the GPU, this leads to an expensive
data transfer between the GPU and the CPU at each step of the factorization. To avoid this expensive
data transfer, our second implementation performs the entire factorization on the GPU. Although the
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Figure 1. Symmetric indefinite factorization algorithm: (a) Bunch–Kaufman [5]; (b)A Aasen’s [12], where
the first block column L1Wnt ;1 is the first nb columns of the identity matrix and ŒL; U; P ! D LU.A/ returns

the LU factors of A with partial pivoting such that LU D PA.

CPU may be more efficient at performing the BLAS-1 and BLAS-2 based panel factorization, this
implementation often obtains higher performance by avoiding the expensive data transfer (Figure 4).

When the entire factorization is implemented on the GPU, up to two columns of the trailing
submatrix must be scanned to select a pivot – the current column and the column with index
corresponding to the row index of the element with the maximum modulus in the first column.
This not only leads to the expensive global reduce on the GPU but also to irregular data accesses
because only the lower-triangular part of the submatrix is stored. This makes it difficult to obtain
high performance on the GPU. In the next two sections, we describe two other algorithms (i.e.,
communication-avoiding and randomization algorithms) that aim at reducing this bottleneck.

2.3. Aasen’s algorithm

To solve a symmetric indefinite linear system, Aasen’s algorithm [8] factorizes A into an LTLT

decomposition. The algorithm takes advantage of the symmetry of A and performs 1
3n
3 C O.n2/

flops, which are the same flop count as that of the Bunch–Kaufman algorithm. In addition, like the
Bunch–Kaufman algorithm, it is backward stable subject to a growth factor. To maintain the stabil-
ity, at each step of the factorization, it uses the largest element of the current column being factorized
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Figure 2. Graphics processing unit implementation of Bunch–Kaufman algorithm: (a) Bunch–Kaufman; (b)
Bunch–Kaufman (continued).

as the pivot, leading to more regular data access compared with the Bunch–Kaufman algorithm (that
may scan an additional column, some part of which may be stored as the transpose of the correspond-
ing part of the row). To exploit the memory hierarchy of modern computers, a blocked version of
the algorithm was developed [10], which is based on a left-looking panel factorization, followed by
a right-looking trailing submatrix update using BLAS-3 routines. Compared with the column-wise
algorithm, this blocked algorithm performs slightly more flops, requiring 1

3 .1C 1
nb
/n3 CO.n2nb/

flops with a block size nb , but BLAS-3 can be used to perform most of these flops (i.e., 13 .1C 1
nb
/n3).

However, the panel factorization is still based on BLAS-1 and BLAS-2, which often obtains only
a small fraction of the peak performance. To improve the performance of the panel factorization,

Copyright © 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017); e4055
DOI: 10.1002/cpe



SOLVING DENSE SYMMETRIC INDEFINITE SYSTEMS USING GPUs 7 of 15

another variant of the algorithm was proposed [12]. This other variant computes an LTLT factor-
ization of A, where T is a banded matrix with its half-bandwidth equal to the block size nb and then
uses a banded matrix solver to compute the solution. This algorithm factorizes each panel using
an existing LU factorization algorithm, such as recursive LU [26–28] or communication-avoiding
LU (TSLU, for the panel) [29, 30]. In comparison with the panel factorization algorithm used in the
block Aasen’s algorithm, these LU factorization algorithms reduce communication and are likely
to speed up the whole factorization process. This is referred to as a communication-avoiding (CA)
variant of the Aasen’s algorithm, and its pseudocode is shown in Figure 1(b).

In general, a GPU has a greater memory bandwidth than a CPU, but the memory accesses are
still expensive compared with the arithmetic operations. Hence, our implementation is based on the
CA Aasen’s algorithm. Although this algorithm performs most of the flops using BLAS-3 (e.g.,
xGEMM), most of the operations are on the submatrices of the dimension nb-by-nb . In order to run
these small independent BLAS calls in parallel on the GPU, we use GPU streams. An alternative is
to use Batched BLAS, where all independent xGEMMs are grouped together in a single call. Imple-
mentations are available in both MAGMA and CUBLAS. However, as shown in [31, Figure 8(f)], the
streamed implementation (that we use here) is faster than either the MAGMA Batched or CUBLAS
Batched DGEMM for matrices of size above 160 (on K40c GPU for DGEMM on square matrices,
i.e., m D n D k), which is the case here. With the GPU streams, the CA Aasen obtained its best
performance using nb D 256 (Figure 4).

Our CA Aasen’s implementation applies the pivots in two steps: The first step copies all the
columns of the trailing submatrix, which needs to be swapped, into an n-by-2nb workspace. Here,
because of the symmetry, the k-th block column consists of the blocks in the k-th block row and
those in the k-th block column (each block column consists of the nb contiguous columns). Then,
in the second step, we copy the columns of the workspace back to a block column of the submatrix
after the column pivoting is applied. The two-step implementation is used to exploit the parallelism
on multicore CPU [32] and in our non-GPU-resident implementations to factorize the matrices that
do not fit in the GPU memory at once [33]. In our experiments, to factorize the panel, we used the
LU factorization with partial pivoting, using either the multithreaded MKL library on the CPU or
using its native GPU implementation in MAGMA on the GPU. Although the BLAS-1 and BLAS-
2 based panel factorization may be more efficient on the CPU, the second approach avoids the
expensive data transfer required to copy the panel from the GPU to the CPU (see Section 3 for the
performance results).

2.4. Random butterfly transformations

Random butterfly transformation is a randomization technique initially described by Parker [13] and
recently revisited for dense linear systems, either general [34] or symmetric indefinite [15]. It has
also been applied recently to a sparse direct solver in [35]. The procedure to solve Ax D b, where
A is a symmetric indefinite matrix, using a random transformation and the LDLT factorization is
summarized in Algorithm 1. The random matrix U is chosen among a particular class of matrices
called recursive butterfly matrices. A butterfly matrix is an n " n matrix of the form

B<n> D 1p
2

!
R0 R1
R0 #R1

"

where R0 and R1 are random diagonal n2 " n
2 matrices. A recursive butterfly matrix of size n and

depth d is defined recursively as

W <n;d> D

2
664
B
<n=2d!1>
1

: : :

B
<n=2d!1>
2d!1

3
775 $W <n;d!1>; with W <n;1> D B<n>

where the B<n=2
d!1>

i are butterflies of size n=2d!1, and B<n> is a butterfly of size n. The applica-
tion of RBT to symmetric indefinite problems was studied in [36] where it is shown that in practice,
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d D 1 or 2 gives satisfactory results. Note that, as mentioned in [34], the solution can be improved
by adding systematically some steps of iterative refinement in the working precision as indicated
in [23, p. 232]. It is also shown that random butterfly matrices are cheap to store and apply (O.nd/
and O.dn2/, respectively). An implementation for the multicore library PLASMA was described
in [14].

Algorithm 1 Random butterfly transformation algorithm
Generate recursive butterfly matrix U
Apply randomization to update the matrix A and compute the matrix Ar D U TAU
Factorize the randomized matrix using LDLT factorization with no pivoting
Compute right-hand side U T b, solve Ary D U T b, then x D Uy

For the GPU implementation, we use a recursive butterfly matrix U of depth d D 2. Only the
diagonal values of the blocks are stored into a vector of size 2"N as described in [34]. Applying the
depth 2 recursive butterfly matrix U consists of multiple applications of depth 1 butterfly matrices
on different parts of the matrix A. The application of a depth 1 butterfly matrix is performed using a
CUDA kernel where the computed part of the matrix A is split into blocks. For each of these blocks,
the corresponding part of the matrixU is stored in the shared memory to improve the memory access
performance. Matrix U is small enough to fit into the shared memory due to its packed storage.

To compute the LDLT factorization of Ar without pivoting, we implemented a block factoriza-
tion algorithm on multicore CPUs with a GPU. In our implementation, the matrix is first copied to
the GPU; then, the CPU is used to compute the LDLT factorization of the diagonal block. Once
the resulting LDLT factors of the diagonal block are copied back to the GPU, the corresponding
off-diagonal blocks of the L-factor are computed by the triangular solve on the GPU. Finally, we
update each block column of the trailing submatrix calling a matrix–matrix multiply on the GPU.

2.5. Mixed precision algorithm

On modern computers, single precision 32-bit floating point arithmetic is usually at least twice as
fast as double precision 64-bit floating point arithmetic. For example, on a latest NVIDIA GPU (e.g.,
the GeForce GTX Titan Black), the single precision peak performance is about 3" greater than the
double precision peak peformance. This gap can be much greater depending on the number of 32-bit
and 64-bit CUDA cores (e.g., 32" faster on the Titan X). To take advantage of this hardware trend
for solving a linear system of equations, the mixed-precision algorithm may compute a solution in
single precision and then aims to refine the solution to have double precision accuracy by performing
only the critical parts of the algorithm in double precision. Iterative refinement in single/double
precision is presented in [37–39] and has been implemented in so-called mixed precision solvers
in [40, 41].

Figure 3. Fixed precision iterative refinement without pivoting where " is the relative machine precision in
double precision, given by LAPACK’s DLAMCH. The algorithm can be trivially extended to use pivoting.
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Figure 3 shows the pseudocode of such a mixed-precision algorithm, applied to the LDLT fac-
torization with no pivoting. Note that this is different from what is called “mixed precision” in the
literature (e.g., [9, p. 127]) because in our case x WD xCe is computed in double precision. The fac-
torization of the coefficient matrix A is the most computationally expensive kernel, requiring O.n3/
flops, while the other kernels require at most O.n2/ flops. To take advantage of the higher perfor-
mance, the coefficient matrix A is converted to single precision and factorized in single precision.
Then, in order to obtain double-precision accuracy, double-precision arithmetic is used to compute
the residual vector and to update the solution vector. To compute the residual vector, the origi-
nal coefficient matrix A is needed. Hence, compared with the standard algorithm, which performs
all the operations in double precision, the mixed-precision algorithm requires 50% more memory
to store A in single precision. However, the most expensive kernel is handled in single precision,
and the mixed-precision algorithm may obtain a higher performance than the standard algorithm
does, as long as it requires a small number of iterations. The numerical analysis of the standard or
mixed-precision iterative refinements can be found in [9, 37–39, 42].

3. EXPERIMENTAL RESULTS

3.1. Comparison of symmetric indefinite solvers

Figure 4(a) and (b) compares respectively the performance in Gflop/s and time for the symmetric
indefinite factorizations where the test matrices are random. The “Gflop/s” is computed as the ratio
of the number of flops required for the LDLT factorization (i.e., n3=3) over time (in seconds) for
the particular dimension of the matrix, n. Note that, for normalization of the graph, we also con-
sider the same flop count for LU , even though it performs twice more flops. The experiments were
conducted on two eight-core Intel SandyBridge CPUs with an NVIDIA K40c GPU. The code is
compiled using the GNU gcc version 4.4.7 and the nvcc version 7.0 with the optimization flag
-O3 and linked with Intel’s Math Kernel Library (MKL) version xe_2013_sp1.2.144. First, when
the matrix size is large enough (i.e., n > 10;000), the performance of the Bunch–Kaufman algorithm
can be improved using the GPU over the multithreaded MKL implementation (routine dsytrf) on
the 16 cores of two Sandy Bridge CPUs. In addition, performing the panel factorization on the GPU
avoids the expensive data transfer between the CPU and GPU and may improve the performance
of the hybrid CPU/GPU implementation. Next, the communication-avoiding variant of the Aasen’s
algorithm further improves the performance of the Bunch–Kaufman by reducing the synchroniza-
tion and communication costs required for selecting the pivots. The RBT approach outperforms
the Bunch–Kaufman and Aasen factorizations, but, as mentioned infig:perffacto [14], it may not be
numerically stable for some matrices, and it requires in general a few steps of iterative refinement in
the working precision. However, the performance of all the symmetric factorizations with provable
stability was lower than that of the LU factorization. In addition, although our current implementa-
tions of the Bunch–Kaufman and Aasen’s algorithms were slower than the LU factorization, they
preserve the symmetry that can reduce the runtime or memory requirement for the rest of the soft-

Figure 4. Performance of dense symmetric factorizations (double precision); (a) Gflop/s; (b) time (s).
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ware (e.g., sparse symmetric factorization, or any simulation code). The symmetric factorization
also preserves the inertia of the coefficient matrix.

After having compared the performance of the factorization, we now compare the performance
of solving a linear system using random matrices. Figure 5(a) and (b) compares respectively the
performance in Gflop/s and time for the symmetric indefinite solvers on multicores with a GPU.
The “Gflop/s” is computed as the ratio of the number of flops required for the factorization (i.e.,
n3=3) plus the number of flops for the solve (i.e., 2n2 C n) over time (in seconds). The time for the
transfer of the matrices between CPU and GPU is also taken into account. Here, the randomization
and the iterative refinement are performed on the GPU; the factorizations are performed with the
hybrid CPU/GPU implementations as described previously. The solve is performed on the CPU for
Aasen and Bunch–Kaufman and on the GPU for the other implementations. Here, the curve for the
RBT solver with iterative refinement stops at size 20;000 because the iterative refinement requires a
copy of the original matrix and thereby two times more memory on the GPU. Consistently with the
previous experiments, the Aasen solver is slightly faster than the Bunch–Kaufman solver, and the
no-pivoting solvers outperform those that use pivoting.

Let us now study the backward error obtained for the linear system solution computed with the
corresponding solvers (on random matrices). We plot in Figure 6 the componentwise backward error
given in [7, p. 78] and expressed by

! D max
i

jAx # bji
.jAj $ jxj C jbj/i

;

where x is the computed solution. For the RBT solver, we consider the cases without iterative
refinement and with one step of iterative refinement in the working precision. We observe that adding

Figure 5. Performance of dense symmetric solvers (double precision): (a) flop/s; (b) time (s).

Figure 6. Comparison of componentwise backward error (double precision).
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one step of iterative refinement is sufficient to obtain a backward error similar to the other solvers
(i.e., in the range 10!14 # 10!15 for the random matrices considered in these experiments).

3.2. Experiments and applications for no-pivoting LDLT

In some physical applications involving dense symmetric complex non-Hermitian systems, it is not
necessary to pivot in the LDLT factorization (see e.g., [23, p. 209] for more information on this
class of matrices). These systems are classically solved using an LU factorization because ScaLA-
PACK does not provide symmetric factorization for this type of matrix. The application considered
here is related to the simulation of processes in which acoustic waves are scattered by obstacles.
Unless the geometry of the scattering object is very simple, it is generally not possible to find an
analytical solution of scattering problems and then numerical schemes are required. A classical
approach is to approximate the solution to time harmonic acoustic problems using the boundary
element method (BEM). The BEM discretization leads to linear systems with dense complex sym-
metric (non-Hermitian) matrices that usually do not require pivoting. Here, we consider two test
cases where the scattering objects correspond to a human head and a truck engine (Figure 7).

The matrices (in single complex precision) resulting from the BEM discretization have, respec-
tively, the sizes 10;424 and 15;135. Tables I and II present numerical results for the solution
based on our LDLT factorization with no pivoting on the GPU (see end of Section 2.4, here,
no RBT is used), applied to two sample matrices with comparison to LU factorization. Because
of the smaller number of flops, our LDLT factorization enables us to accelerate the calculation
by about 48% while keeping a similar accuracy, expressed here by computing the scaled residual
jjb # Axjj1=.N jjAjj1 " jjxjj1/.

Figure 7. Test cases for acoustic scattering problems: (a) Human head; (b) Truck engine.

Table I. Human head (matrix size is 10;424 in
single complex precision).

Time (s) Scaled residual

LU 1.34 1.44e-10
LDLT NoPiv 0.69 1.37e-10

Table II. Car motor (matrix size is 15;135 in
single complex precision).

Time (s) Scaled residual

LU 3.74 7.46e-11
LDLT NoPiv 1.93 9.28e-11
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3.3. Performance results of mixed-precision iterative refinements

Figure 8 compares the performance of the mixed-precision algorithm (routine ZCHESV) with that
of the standard symmetric indefinite solvers using single and double complex precisions (routines
CHESV and ZHESV), and on random matrices. We computed the Gflop/s using the flop count needed
for the standard algorithm in double complex precision (i.e., 43n

3 C 8n2nrhs C o.n2/ flops needed
to compute the LDLT factorization and to perform a pair of forward and backward substitutions,
where n is the dimension of A and nrhs is the number of right-hand sides). The iterative refinement
converged in two iterations to obtain the accuracy of the double precision. As we expected, for a
large enough matrix, the mixed-precision algorithm obtained a performance close to that in single
precision (e.g., for n D 20; 000, the single precision and mixed-precision solvers were about 1:36"
and 1:27" faster than the double precision solver, respectively).

For these experiments, we used the LDLT factorization without pivoting. This is motivated by
our observation that in many real applications, the pivoting is not needed in most of the cases. In the
rare case of the failure, the iterative refinement would not converge, signaling the need for pivoting.

Figure 8. Performance of the standard and mixed-precision solvers: CHESV and ZHESV are the standard
solver in single and double complex precision, while ZCHESV is the mixed-precision solver: (a) one right-

hand side; (b) one hundred right-hand sides.

Figure 9. Time breakdown of the mixed-precision solver: CHETRF compute the LDLT factorization in
single complex precision, while CHETRS and ZHEMM are used for iterative refinement to compute the solu-
tion with the LDLT factors and to perform the matrix–matrix multiply, respectively. See Figure 3 for the

pseudocode: (a) one right-hand side; (b) one hundred right-hand sides.

Copyright © 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017); e4055
DOI: 10.1002/cpe



SOLVING DENSE SYMMETRIC INDEFINITE SYSTEMS USING GPUs 13 of 15

When this happens, the user can fall back on a stable algorithm like Bunch and Kaufman’s. We
can easily integrate the RBT into the mixed-precision solver in order to reduce the probability of
encountering small diagonal entries.

In Figure 8, we observe that the performance benefit of using the mixed-precision algorithm
decreases as the number of right-hand sides increases. This is due to the increase in the relative
overhead associated with the residual computation in double precision compared with the factoriza-
tion cost. This can be also seen in Figure 9, where the time spent by the double-precision arithmetic
increases (e.g., ZHEMM).

4. CONCLUSION

We presented the performance of dense symmetric indefinite solvers on hybrid GPU+CPU machines
for which until recently, there were no implementations of the algorithms that can utilize the GPU.
The symmetric pivoting required to maintain the numerical stability of the factorization leads to
frequent synchronizations and exhibits irregular memory accesses, which are difficult to optimize
on a GPU. We investigated several techniques to reduce the expensive communication required
for pivoting (e.g., native GPU and communication-avoiding implementations). Unfortunately, the
overhead associated with the symmetric pivoting can still be significant. However, these algorithms
preserve the symmetry, which is required in several physical applications, and reduce the runtime
and memory requirement for the rest of the application software. The randomization using RBT
followed by an LDLT factorization without pivoting outperforms other algorithms and is about
twice as fast as the LU factorization. We also presented experimental results for acoustic scattering
problems where there is no need for pivoting and how mixed precision can be used to enhance
performance. Our current implementations are based on standard BLAS/LAPACK routines, and we
are improving the performance of factorization by developing specialized GPU kernels. We point
out that low-level optimizations are also provided in vendor libraries (e.g., CuSolver implementation
of the Bunch–Kaufman algorithm). Our implementations have been released as a part of MAGMA
software package, including the iterative refinements which use the mixed-precision arithmetics.
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