
Using Random Butterfly Transformations in Parallel
Schur Complement-Based Preconditioning

Marc Baboulin
Université Paris-Sud
91405 Orsay, France

Email: baboulin@lri.fr

Aygul Jamal
Université Paris-Sud
91405 Orsay, France
Email: jamal@lri.fr

Masha Sosonkina
Old Dominion University

Norfolk, VA, 23529, United States
Email: msosonki@odu.edu

Abstract—We propose to use a randomization technique based
on Random Butterfly Transformations (RBT) in the Algebraic
Recursive Multilevel Solver (ARMS) to improve the precondi-
tioning phase in the iterative solution of sparse linear systems.
We integrated the RBT technique into the parallel version of
ARMS (pARMS). The preliminary experimental results on some
matrices from the Davis’ collection show an improvement of the
convergence and accuracy of the results when compared with
existing implementations of the pARMS preconditioner.

I. INTRODUCTION

W ITH the evolution of recent computer architectures, the
growing gap between communication and computation

efficiency makes communication very expensive (at a cost of
one communication we can generally perform thousands of
arithmetical operations). This requires the rethinking of most
of numerical libraries in order to take advantage of current
parallel architectures which are commonly based on multicore
processors [1], possibly with accelerators [2], such as Graphics
Processing Units (GPU) or Intel Xeon Phi.

In this work we are concerned with the solution of linear
systems Ax = b where A is an n × n real matrix (dense or
sparse), b is a real n-vector and x is the n-vector of unknowns.
This operation is at the heart of many applications in high-
performance computing (HPC) and is usually solved using
either direct or iterative methods.

Direct methods [3] usually solve a linear system of equa-
tions Ax = b using factorization techniques depending on
the properties of the original matrix A. For a general system,
we compute an LU factorization of A that decomposes the
input matrix A into the product L × U , where L is a lower
triangular matrix and U is an upper triangular matrix. When
A is positive definite, then we decompose the matrix A into
the product A = L × LT (Cholesky decomposition, which
requires half the number of flops of the LU factorization). In

This work used resources of the National Energy Research Scientific
Computing Center (NERSC), supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. Sosonkina
was supported in part by the Air Force Office of Scientific Research under
the AFOSR award FA9550-12-1-0476, by the National Science Foundation
grants NSF/OCI—0941434, 0904782, 1047772, and by the U.S. Department
of Energy, Office of Advanced Scientific Computing Research, through the
Ames Laboratory, operated by Iowa State University under contract No. DE-
AC02-07CH11358.

both cases (LU or Cholesky), the solution is then obtained by
solving successively 2 triangular systems.

Another possibility to solve Ax = b is to use an iterative
method to compute an approximate solution. These methods
involve passing from one iteration to the next one by mod-
ifying one or a few components of an approximate vector
solution at a time. Classical examples of iterative methods are
the Jacobi, Gauss-Seidel, Successive Over-Relaxation (SOR),
or Krylov subspace methods [4].

The Algebraic Recursive Multilevel Solver (ARMS) is one
of the solvers which applies the iterative Krylov subspace
methods in sparse linear systems, it relies on multilevel partial
elimination. The preconditioning separates the entries into two
parts, the first part called fine set which is composed of block
independent set, and the second part called coarse set which
contains the rest of the entries. The coarse set can be used
to built the Schur complement, which allows us to perform a
block LU factorization. The inter-level LU factorization can
be built from the upper level LU factorization and the fine set,
up to the first level.

Parallel ARMS (pARMS) is a distributed-memory imple-
mentation of ARMS, which relies on distributed group inde-
pendent sets. It provides a set of standard preconditioners such
as Additive Schwartz, Schur complement and Block Jacobi,
which allow to run performance tests.

When solving square linear systems Ax = b using Gaussian
elimination (e.g., in LU factorization), we commonly use
partial pivoting to avoid having zero or too-small numbers on
the diagonal. This technique is implemented in current linear
algebra libraries and ensures stability [5]. However, partial
pivoting requires communication (search for pivots, swapping
of rows). For example, on a hybrid CPU/GPU system, the LU
algorithm in the MAGMA library [2] spends more than 20%
of the factorization time in pivoting even for a large random
matrix of size 10, 000 × 10,000 [6].

As an alternative to pivoting, an approach based on ran-
domization called Random Butterfly Transformation (RBT) [7]
was recently revisited. Following the RBT method, A is
transformed into a matrix that would be sufficiently random
to avoid pivoting (with a probability close to 1). RBT is a
random transformation of A which can avoid pivoting and
then can reduce the amount of communication. We can obtain



satisfying accuracy with an additional computational cost,
which is negligible compared to the cost of factorization. This
method has been successfully applied to dense linear systems
for either general [6] or symmetric indefinite [8] systems, in
the context of direct methods based on matrix factorization.

In this work we want to study the possibility of using RBT
in iterative linear system solvers based on Krylov Subspace
methods, which are widely used in physical and industrial
applications.

This paper is organized as follows. Section II presents
the preconditioned Krylov subspace method (PKSM) and
the parallel Algebraic Recursive Multilevel Solver (pARMS)
for solving sparse linear systems. Section III explains how
randomization through Random Butterfly Transformation can
be integrated into pARMS. For the obtained solver, Section IV
proposes performance and accuracy results. Conclusions are
presented in Section V.

II. PRECONDITIONED KRYLOV METHODS AND THE
PARMS SOLVER

A. Preconditioned Krylov Methods

A preconditioned Krylov subspace method (PKSM) is used
to solve the linear system Ax = b, where A is square non-
symmetric matrix, in general. If M is a preconditioning matrix,
then the right-preconditioned system is may be expressed as:

AM−1y = b, where y = Mx , (1)

which is solved instead of the original system Ax = b. To
solve this system by using iterative methods, first, we compute
the residual r0 = b−Ax0 [9] after initializing x0, then we may
use a right-preconditioned Krylov subspace method to find an
approximate solution from the affine subspace [10]:

xm = x0 + span{r0, AM−1r0, . . . , (AM−1)m−1r0} , (2)

which satisfies certain conditions. For instance, the GMRES
algorithm [4] requires that the residual rm = b − Axm has
a minimal 2-norm. The flexible GMRES is abbreviated as
FGMRES [4]. Its implementation differs from that of GMRES
mainly in storing the preconditioned vectors zj = M−1j vj
because the relation AZm = Vm+1H̄m is used instead of a
simpler one (AM−1)Vm = Vm+1H̄m from GMRES.

One way to obtain the preconditioning matrix M is to use
an incomplete LU (ILU) factorization. ILU is constructed by
performing an approximate Gaussian Elimination (GE) [11]
on a sparse matrix A and dropping certain nonzero entries
of the factorization according to different dropping strategies.
A dropping strategy that relies on levels of the matrix fill-in
results in a factorization called ILU(K).

The preconditioner ILU(0) is obtained by performing the
LU factorization of A and dropping all fill-in elements gen-
erated during the process. Conversely, if the nonzeros are
dropped according to their numerical value magnitudes, then
the resulting factorization is called ILU with the threshold
or—if combined with the dropping strategy based on the
number of remaining nonzero—with dual threshold (ILUT )

and is performed as follows. In the algorithm ILUT (k, τ),
there are two important rules. (1) If an element is less than
relative tolerance τi (τ × the norm of the ith row), it is
dropped. (2) Keep only the k largest elements in the L and U
parts of the row along with the diagonal element.

In this work, we use a preconditioner called Algebraic
Recursive Multilevel Solver (ARMS) [12], which is based on
a block incomplete LU factorization with different dropping
strategies. This block factorization consists of an approximate
GE process separating the unknowns into two sets; and an
idea of independent or “group independent” set is exploited to
define the separation. Hence, the original linear system Ax = b
is permuted into the form:(

B F

E C

)
×
(
u

y

)
=

(
f

g

)
, (3)

where the submatrix B corresponds to group-independent
set reorderings, thereby generating a block-diagonal matrix
B [13]. Thus, it is convenient to eliminate the u variable to
obtain a system with only y variable. The coefficient matrix
for the resulting “reduced system” is the Schur complement
S = C − EB−1F [14]. A recursion can now be exploited,
such that dropping is applied to S to limit the fill-ins followed
by the reordering of the resulting reduced system into the
form (3) by using the group-independent set reordering again.
This process is repeated for several levels of recursion until the
Schur-complement system is small enough or until a maximum
number of recursion levels is reached. Then, the last Schur
complement may be solved by a direct or an iterative solver.
Note that the sparsification of the Schur complement may
be undertaken at each level of recursion, to keep down the
preconditioning costs.

In this paper, we are interested in parallelizing the iterative
methods rather than direct methods. There are two reasons can
explicate our choices. First, the direct methods are scale poorly
with problem size, when the problem size augment rapidly, the
iterative methods are the only choice, which can compute the
approximate solution of linear system Ax = b. Second, it is
hard to parallelize the direct methods which need more space
and time to compute, while iterative methods involve passing
from one iteration to the next one by modifying one or a few
components of an approximate vector solution at a time and
it is easy to parallelize.

B. Parallel Implementation of ARMS

Figure 1 outlines distributed linear system solution using
pARMS [15]. First, the initial matrix A is distributed among
the processors, using a graph partitioning method. In Figure 1,
each column of blocks depicts one processor, hence there are
five processors shown. Second, each processor solves its part
of the system in parallel to construct its portion of the global
preconditioner. Then FGMRES solves the preconditioned sys-
tem with a given accuracy.

When considering the parallel implementation, it is impor-
tant to specify how the matrix is distributed and handled in
parallel. In particular, our pARMS implementation partitions



Fig. 1. Sketch of the distributed linear system solution using pARMS on five processors.

Fig. 2. Per-subdomain view of equation variables-points.

the whole matrix on a single processor using a distributed
site expansion (DSE) technique, which is rather simple yet
effective in constructing well-balanced subdomains with small
interfaces [16]. Although partitioning the entire matrix by a
single processor lacks scalability, we note here that this is done
by the driver routine, which may be adapted to an application
matrix size and format at hand. Given a distributed matrix,
Figure 2 shows the per-subdomain division of variables into
internal, interdomain interface, and external (residing on the
neighboring processors) sets.

We outline now three global preconditioners types
available in pARMS: Block-Jacobi preconditioner (BJ), Schur
complement preconditioner (SCHUR), and Schur-complement
based Restrictive Additive Schwartz preconditioner
(SchurRAS). BJ is the simplest global preconditioner
because it does not take into account the interface information
between neighboring subdomains [17]. SCHUR relates
equations associated with the local and interdomain interface
points [18]. SchurRAS is constructed from the local ARMS
preconditioners in each subdomain using an overlap similar to
a standard RAS preconditioner [19] and acting on the Schur
complement system as shown in [20]. Specifically, for each
of the three preconditioner types, the following algorithms
may be implemented in each subdomain.

BJ preconditioner:
1. Update local residual: ri = (b−Ax)i,
2. Solve: Aiδi = ri,
3. Update local solution: xi = xi + δi.
SCHUR preconditioner:
1. From (3) compute: g′i = gi − EiB

−1
i fi,

2. Solve: Siyi+
∑

j∈Ni
Eijyj = g′i, where Si = Ci−EiB

−1
i F

and Ni is a set of neighboring subdomains,
3. Back substitute: ui with Biui = fi − Eiyi.
SchurRAS preconditioner:
1. Compute local right-hand side g′i.
2. Solve local Schur-complement system extended with rows
for all external variables yi,ext.
3. Back substitute: ui with Biui = fi − Eiyi.

Note that the local solves in step 2 of BJ, SCHUR, and
SchurRAS may be accomplished using incomplete LU or
ARMS procedures, mentioned in section II-A. In this work, we
apply ARMS enhanced with Recursive Butterfly Transforma-
tions (RBT) in step 2 of SCHUR to alleviate the extra work
associated with pivoting that may be required in the Schur-
complement matrix Si due to its poor conditioning.



III. OVERVIEW OF RANDOM BUTTERFLY
TRANSFORMATIONS AND IMPLEMENTATION

In this section we recall the main definitions related to RBT
and how it can be applied to pARMS.

A. Randomization

Random Butterfly Transformation (RBT) is a randomization
technique initially described by Parker [7] and recently revis-
ited in [6] for general dense systems and [8] for symmetric
indefinite systems. It has also been applied recently to a sparse
direct solver in a preliminary paper [21]. The procedure to
solve Ax = b, where A is a general matrix, using a random
transformation and the LU factorization is summarized in
Algorithm 1. The random matrices U and V are chosen
among a particular class of matrices called recursive butterfly
matrices. A butterfly matrix is a random n× n matrix of the
form

B<n> =
1√
2

[
R0 R1

R0 −R1

]
,

where R0 and R1 are random diagonal n
2 ×

n
2 matrices. A

recursive butterfly matrix of size n and depth d is defined
recursively as

W<n,d> =


B

<n/2d−1>
1

. . .

B
<n/2d−1>

2d−1

 ·W<n,d−1>

with W<n,1> = B<n> where the B<n/2d−1>
i are butterflies

of size n/2d−1, and B<n> is a butterfly of size n.
In the original work by Parker, d = log2 n; it is proved

that, given two recursive butterfly matrices U and V , the
matrix UTAV can be factored into LU without pivoting
with probability 1 in exact arithmetic, or with probability
1 − O(2−t) using t-bit floating point numbers. RBT was
extensively studied for dense matrices and it was shown in [6]
that in practice, d = 1 or 2 is enough to obtain a satisfactory
accuracy (in most cases a few steps of iterative refinement can
recover the digits that have been lost). It has been showed
that random butterfly matrices are cheap to store and to
apply (O(nd) and O(dn2) respectively) and they proposed
implementations using the dense linear algebra PLASMA and
MAGMA. As was demonstrated in the related papers, the
preprocessing by RBT can be easily parallelized and provides
good scalability.

Algorithm 1 Random Butterfly Transformation Algorithm
Generate recursive butterfly matrices U and V
Perform randomization to update the matrix A and obtain
the randomized matrix Ar = UTAV
Factorize the randomized matrix with no pivoting [22]
Compute UT b and solve Ary = UT b, then x = V y

B. Integration of RBT into pARMS

We describe in this section how Random Butterfly Trans-
formations can be integrated into pARMS. Our goal is to
find the last level of preconditioning and then replace the
original ILUT factorization by the RBT pre-processing. Note
that RBT usually concerns dense linear systems, while ARMS
addresses sparse linear systems. So we have to convert the
last Schur complement which is a sparse matrix into a dense
format, and after that we can use RBT. Then after randomizing
the last Schur complement A with recursive butterfly matrices
U and V , the dense matrix is factorized using a Lapack-
like [23] routine that performs Gaussian elimination without
pivoting, followed by two triangular solves. Note that RBT
requires the size of the matrix to be a power of 2, which can
be obtained by “augmenting” the matrix A with additional 1’s
on the diagonal.

The pARMS solver manages the parallel part by using
global preconditioning with MPI instructions, while the local
part of the code, more precisely the local preconditioning
phase does not use MPI instructions. Then the parallelism
is entirely managed by pARMS. The local preconditioning
can be based on ilu0, iluk, ilut or arms. The essential part
resides in the last Schur complement, where we implemented
RBT and the preconditioned matrix is then used in FGMRES
in order to solve the linear system.

IV. NUMERICAL EXPERIMENTS

This section describes preliminary results obtained by inte-
grating RBT into the pARMS solver. The experiments have
been carried out using one node (2 twelve-core AMD Mag-
nyCours Opteron 6172 processors running at 2.10GHz) of the
Hopper machine located at NERSC1. In these experiments,
we used matrices from the Davis’ collection [24] to test
the performance of different preconditioners. The first matrix
(Sherman5) is a real non-symmetric matrix of size 3, 312
(nnz = 20,793). Sherman5 arises from a three dimensional
simulation model on a nx × ny × nz grid using a seven-
point finite-difference approximation with nc equations and
unknowns per grid block, where nx is 16, ny is 23, nz is 3, nc
is 3. The second matrix (Raefsky3) is a real non-symmetric
matrix of size 21, 200 (nnz =1,488,768), which arises from a
fluid structure interaction turbulence problem. The third matrix
(Cant) is a real symmetric matrix that comes from a 2D/3D
FEM problem, of size 62,451 (nnz = 2,034,917). For the three
matrices, we study the results obtained when using a global
Schur complement-based preconditioner with the following lo-
cal preconditioners: ilu0, iluk, ilut, arms, or arms_rbt. The
pARMS parameters are chosen for these matrices following
the guidance for the local ARMS preconditioner, as explained
in [12], for example. Certain parameters influence considerably
the size and density of the last Schur Complement, which,
in turn, affects greatly the performance of RBT. Since the
RBT for dense matrices is used in this work, it is desirable
that the last Schur Complement remains dense while being

1http://www.nersc.gov



relatively small. Hence, parameter values for the number of
ARMS levels and the ARMS independent block size were
chosen such that a small Schur Complement is obtained. In
particular, the former parameter was small (equals two) while
the latter was large (allowing to form the blocks up to the
entire local matrix size). At the same time, the drop tolerance
for the last Schur Complement was kept quite low (0.001) as
well as all the other intermediate-level drop tolerances, so that
there is close to none sparsification of the Schur Complement.

The experiments are performed using 4 to 12 cores, and
we use one MPI process per core and no multi-threading.
In Figure 3, we compare the number of iterations required
for convergence. We observe that, for matrices Sherman5
(fig. 3(a)), Raefsky3 (fig. 3(b)), arms_rbt performs better
than the other local preconditioners. For Cant, arms_rbt
converges in fewer iterations than the other preconditioners
do so when using up to eight cores. This observation suggests
that arms_rbt may be a more versatile preconditioner to use
for obtaining superior convergence. Note that, for different
numbers of subdomains (one per MPI process) in a given
matrix, the obtained parallel preconditioning varies leading to
the differences in the number of iterations to converge. Note
that for these preliminary tests, arms_rbt requires more time
to solve the system since, in our preliminary implementation,
a dense-matrix solver was used to solve the last Schur com-
plement system in pARMS. In the future, we plan to develop
a sparse RBT solver based on a sparse direct solver, such
as SuperLU [25]. Figure 4 represents the residual obtained
with the five local preconditioners. We observe that these
preconditioners provide us with a similar accuracy, arms_rbt
being more accurate for the matrix Raefsky3.

V. CONCLUSION AND FUTURE WORK

We have investigated the feasibility of using RBT random-
ization in the pARMS solver and how RBT may enhance the
iterative convergence. Most of our experiments showed an im-
provement in the number of iterations and accuracy of results.
However, our integration of RBT in pARMS necessitates an
implementation that may adjust the sparsity of the last Schur
complement matrix based on the available memory and on the
performance characteristics of its (direct) solver at hand. As
a future work, we will integrate a sparse RBT direct solver
based on SuperLU, which will also enable us to solve large-
scale sparse linear systems.

REFERENCES

[1] A. Buttari, J. Langou, J. Kurzak, J. Dongarra, A class of parallel tiled
linear algebra algorithms for multicore architectures, Parallel Comput.
35 (1) (2009) 38–53.

[2] S. Tomov, J. Dongarra, M. Baboulin, Towards dense linear algebra
for hybrid GPU accelerated manycore systems, Parallel Computing
36 (5&6) (2010) 232–240.

[3] T. A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals
of Algorithms 2), Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2006.

[4] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition,
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2003.

[5] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd
Edition, Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2002.

[6] M. Baboulin, J. Dongarra, J. Herrmann, S. Tomov, Accelerating linear
system solutions using randomization techniques, ACM Trans. Math.
Softw. 39 (2) (2013) 8:1–8:13.

[7] D. S. Parker, Random butterfly transformations with applications in
computational linear algebra, Tech. Rep. CSD-950023, University of
California Los Angeles, CA USA (1995).

[8] M. Baboulin, D. Becker, G. Bosilca, A. Danalis, J. Dongarra, An
efficient distributed randomized algorithm for solving large dense sym-
metric indefinite linear systems, Parallel Computing 40 (7) (2014) 213–
223.

[9] M. Arioli, J. Demmel, I. Duff, Solving sparse linear systems with sparse
backward error, SIAM Journal on Matrix Analysis and Applications
10 (2) (1989) 165–190.

[10] B. N. Bond, L. Daniel, Guaranteed stable projection-based model
reduction for indefinite and unstable linear systems, in: Proceedings
of the 2008 IEEE/ACM International Conference on Computer-Aided
Design, ICCAD ’08, IEEE Press, Piscataway, NJ, USA, 2008, pp. 728–
735.

[11] S. Donfack, J. Dongarra, M. Faverge, M. Gates, J. Kurzak, P. Luszczek,
I. Yamazaki, A Survey of Recent Developments in Parallel Implementa-
tions of Gaussian Elimination, Concurrency and Computation: Practice
and Experience (2014) 18.

[12] Y. Saad, B. Suchomel, ARMS: an algebraic recursive multilevel solver
for general sparse linear systems, Numerical Linear Algebra with
Applications 9 (5) (2002) 359–378.

[13] Y. Bai, W. N. Gansterer, R. C. Ward, Block tridiagonalization of
"effectively" sparse symmetric matrices, ACM Trans. Math. Softw.
30 (3) (2004) 326–352.

[14] Z.-H. Cao, Constraint schur complement preconditioners for nonsym-
metric saddle point problems, Appl. Numer. Math. 59 (1) (2009) 151–
169.

[15] Z. Li, Y. Saad, M. Sosonkina, pARMS: a parallel version of the algebraic
recursive multilevel solver, Numerical Linear Algebra with Applications
10 (5-6) (2003) 485–509.

[16] Y. Saad, M. Sosonkina, Non-standard parallel solution strategies for
distributed sparse linear systems, in: P. Z. et al. (Ed.), Parallel Compu-
tation: 4th International ACPC Conference, Vol. 1557 of Lecture Notes
in Computer Science, Springer-Verlag, 1999, pp. 13–27.

[17] B. F. Smith, P. E. Bjørstad, W. D. Gropp, Domain Decomposition:
Parallel Multilevel Methods for Elliptic Partial Differential Equations,
Cambridge University Press, New York, NY, USA, 1996.

[18] Y. Saad, M. Sosonkina, Distributed Schur Complement techniques for
general sparse linear systems, SIAM J. Scientific Computing 21 (1999)
1337–1356.

[19] X.-C. Cai, M. Sarkis, A restricted additive schwarz preconditioner for
general sparse linear systems, SIAM J. Sci. Comput. 21 (2) (1999) 792–
797.

[20] Z. Li, Y. Saad, Schurras: A restricted version of the overlapping schur
complement preconditioner, SIAM J. Sci. Comput. 27 (5) (2005) 1787–
1801.

[21] M. Baboulin, X. S. Li, F.-H. Rouet, Using random butterfly transfor-
mations to avoid pivoting in sparse direct methods, in: Proceedings of
VECPAR 2014, 2014.

[22] M. Baboulin, S. Donfack, J. Dongarra, L. Grigori, A. Rémy, S. Tomov,
A class of communication-avoiding algorithms for solving general
dense linear systems on cpu/gpu parallel machines, in: International
Conference on Computational Science (ICCS 2012), Vol. 9 of Procedia
Computer Science, Elsevier, 2012, pp. 17–26.

[23] E. Andersen, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchev, D. Sorensen, LAPACK
user’s guide, 3rd. Ed. 1999 SIAM, Philadelphia (1999).

[24] T. A. Davis, Y. Hu, The University of Florida Sparse Matrix Collection,
ACM Trans. Math. Softw. 38 (1) (2011) 1–25.

[25] X. S. Li, An overview of SuperLU: Algorithms, implementation, and
user interface, ACM Transactions on Mathematical Software 31 (3)
(2005) 302–325.



Sherman5 ilu0 iluk ilut arms arms_rbt

N = 4 38 17 4 10 5

N = 6 36 17 4 10 4

N = 8 36 16 4 12 4

N = 10 37 18 4 13 5

N = 12 37 16 6 16 6

N = 4 N = 6 N = 8 N = 10 N = 12

0

5

10

15

20

25

30

35

40

ilu0

iluk

ilut

arms

arms_rbt

Number of Cores

N
u

m
b

e
r

o
f
It
e

ra
ti
o

n
s

(a) Sherman5

Raefsky ilu0 iluk ilut arms arms_rbt

N = 4 8 3 6 18 4

N = 6 3 2 5 56 3

N = 8 4 3 5 34 3

N = 10 3 2 3 17 3

N = 12 4 3 3 20 3

N = 4 N = 6 N = 8 N = 10 N = 12

0

10

20

30

40

50

60

ilu0

iluk

ilut

arms

arms_rbt

Number of Cores

N
u

m
b

e
r

o
f
It
e

ra
ti
o

n
s

(b) Raefsky3

Cant ilu0 iluk ilut arms arms_rbt

N = 4 5 3 3 4 2

N = 6 5 3 2 6 2

N = 8 5 3 3 6 2

N = 10 5 3 3 6 6

N = 12 5 3 3 6 6

N = 4 N = 6 N = 8 N = 10 N = 12

0

1

2

3

4

5

6

7

ilu0

iluk

ilut

arms

arms_rbt

Number of Cores

N
u

m
b

e
r

o
f
It
e

ra
ti
o

n
s

(c) Cant

Fig. 3. Iterations required for convergence with five choices of local preconditioner.

Sherman5 ilu0 iluk ilut arms arms_rbt

N = 4 2,63E-005 1,23E-005 1,94E-005 3,74E-006 1,87E-007

N = 6 6,07E-005 3,44E-005 8,84E-006 4,22E-005 1,46E-005

N = 8 2,04E-005 3,85E-005 1,11E-005 5,64E-005 2,02E-005

N = 10 4,08E-005 1,03E-005 5,06E-006 2,76E-005 4,40E-007

N = 12 5,37E-005 4,89E-005 3,32E-006 5,28E-006 5,26E-005

N = 4 N = 6 N = 8 N = 10 N = 12

0,00E+000

1,00E-005

2,00E-005

3,00E-005

4,00E-005

5,00E-005

6,00E-005

7,00E-005

ilu0

iluk

ilut

arms

arms_rbt

Number of Cores

R
e

s
id

u
a

l

(a) Sherman5

Raefsky3 ilu0 iluk ilut arms arms_rbt

N = 4 5,51E-005 7,30E-005 6,31E-005 7,61E-005 5,15E-005

N = 6 6,21E-005 7,83E-005 7,90E-005 8,13E-005 6,50E-005

N = 8 4,77E-005 5,39E-005 7,13E-005 6,90E-005 4,92E-005

N = 10 6,99E-005 7,88E-005 7,10E-005 6,95E-005 5,03E-005

N = 12 5,80E-005 5,74E-005 7,81E-005 7,64E-005 4,53E-005

N = 4 N = 6 N = 8 N = 10 N = 12

0,00E+000

1,00E-005

2,00E-005

3,00E-005

4,00E-005

5,00E-005

6,00E-005

7,00E-005

8,00E-005

9,00E-005

ilu0

iluk

ilut

arms

arms_rbt

Number of Cores

R
e

s
id

u
a

l

(b) Raefsky3

Cant ilu0 iluk ilut arms arms_rbt

N = 4 1,72E-001 4,41E-002 3,49E-004 2,09E-001 3,07E-001

N = 6 1,08E-001 2,11E-002 7,13E-001 1,46E-001 7,53E-002

N = 8 1,34E-001 2,51E-002 1,19E-004 1,50E-001 2,60E-001

N = 10 1,42E-001 2,52E-002 1,07E-004 7,52E-002 1,48E-001

N = 12 1,59E-001 2,78E-002 1,16E-004 1,10E-001 1,48E-001

N = 4 N = 6 N = 8 N = 10 N = 12

0,00E+000

1,00E-001

2,00E-001

3,00E-001

4,00E-001

5,00E-001

6,00E-001

7,00E-001

8,00E-001

ilu0

iluk

ilut

arms

arms_rbt

Number of Cores

R
e

s
id

u
a

l

(c) Cant

Fig. 4. Residual for test problems with five choices of local preconditioner.


