
A mixed-precision quantum-classical algorithm for
solving linear systems

1st Océane Koska
Université Paris-Saclay and Eviden

Orsay, France
oceane.koska@eviden.com

2nd Marc Baboulin
Université Paris-Saclay and Inria

Orsay, France
marc.baboulin@inria.fr

3rd Arnaud Gazda
Eviden Quantum Lab

Les Clayes-sous-Bois, France
arnaud.gazda@eviden.com

Abstract—We address the problem of solving a system of
linear equations via the Quantum Singular Value Transformation
(QSVT). One drawback of the QSVT algorithm is that it requires
huge quantum resources if we want to achieve an acceptable
accuracy. To reduce the quantum cost, we propose a hybrid
quantum-classical algorithm that improves the accuracy and
reduces the cost of the QSVT by adding iterative refinement
in mixed-precision A first quantum solution is computed using
the QSVT, in low precision, and then refined in higher precision
until we get a satisfactory accuracy. For this solver, we present
an error and complexity analysis, and first experiments using the
quantum software stack myQLM.

Index Terms—Quantum computing, Linear systems, Quantum
Singular Value Transformation, Mixed-precision algorithms, It-
erative refinement.

I. INTRODUCTION

In this paper we address the linear system (LS) problem
where, given a nonsingular matrix A ∈ RN×N and a vector
b ∈ RN , we want to compute x ∈ RN such that

Ax = b. (1)

Solving the LS problem accurately and efficiently is a fun-
damental problem in computational science for which there
exist many algorithms and software libraries on classical
processors [2], [16]. Numerical methods based on factorization
or iterative algorithms have reached a high level of maturity
on classical computers in particular with the impressive per-
formance of 1 Exaflop/s achieved for solving a dense linear
system by Gaussian elimination (Linpack benchmark [33]).
The perspective of having operational quantum computers
in a near future has motivated the development of quantum
algorithms for the LS problem, with the promise of either
obtaining faster solution or solving problems that are currently
intractable with classical supercomputers. With algorithms
such as Harrow-Hassidim-Lloyd (HHL) [18], the Quantum
Singular Value Transformation (QSVT) [15], or the Variational
Quantum Linear Solver (VQLS) [6], quantum algorithms for
linear systems offer the potential for exponential speedups
under specific conditions.

However, these quantum algorithms currently have limita-
tions in terms of matrix conditioning and solution accuracy.
These can be mitigated by using a combination of both
classical computations (running on a Central Processing Unit
- CPU) and quantum computations (running on a Quantum

Processing Unit - QPU). Recent studies have proposed archi-
tectural designs for the integration of quantum devices into
High-Performance Computing (HPC) systems, to improve the
computation accuracy and to reduce the latency [5], [22].
This type of architectures will be beneficial for implemen-
tations that require data transfer between CPU and QPU.
At the algorithm level, the techniques that could be targeted
to improve linear system solvers could for instance include
preconditioning methods or iterative refinement.

Iterative refinement has been recently studied for the HHL
algorithm [36], [39] or for optimization problems [31]. In
this paper we consider the LS problem solved via the QSVT
method which offers several advantages: the matrix does not
need to be Hermitian and even not square (in this case
we solve a least squares problem), the QSVT method can
exploit efficient block-encoding techniques and appears to be
well suited for Large Scale Quantum (LSQ) architectures.
Note that our work is carried out in an LSQ context and
not NISQ (Noisy Intermediate-Scale Quantum) due to the
excessive depth of quantum circuits for the QSVT algorithm.
The quantum circuit for the QSVT requires a polynomial
approximation that is very expensive if we want to achieve
acceptable accuracy (typically better than 10−5 [32]). This
has motivated our choice for developing a mixed-precision
algorithm which combines the speed and limited precision of
the QSVT with iterative refinement in higher precision. Mixed-
precision techniques are widely used in HPC algorithms [1].
They have been initially motivated by the emergence of GPU
accelerators that provide high performance when computing in
lower precision arithmetic, for instance using tensor core units
[3]. For hybrid CPU/GPU architectures we can achieve high
performance of the solver while preserving the accuracy of the
higher precision and we investigate how similar techniques can
be applied with the QSVT method. Similarly to the CPU/GPU
case, our iterative refinement is also hybrid since it uses
a classical processor (to compute the residual and solution
update) and a quantum processor (for the QSVT solver).
We adapt the iterative refinement to the case where the LS
problem is solved via the QSVT and we present an error and
complexity analysis to evaluate the quantum ans classical costs
of our algorithm. We also show that our approach provides
a significant advantage in complexity compared to directly
solving the LS problem with QSVT in higher precision.

The paper is organized as follows: in Section II, we recall
some results on QSVT and classical mixed-precision iterative
refinement applied to LS problems. Then in Section III, we
describe a hybrid algorithm for LS problems using iterative
refinement based on the QSVT. We also provide a convergence
and complexity analysis. In Section IV, we present experimen-
tal results on random matrices with various condition numbers.
Finally, concluding remarks are given in Section V.

Notation: Unless otherwise stated, ∥.∥ denotes the Euclidean
norm for vectors and the spectral norm for matrices.

II. BACKGROUND

A. Quantum Singular Value Transformation (QSVT)

1) Block-encoding of matrices: Since quantum algorithms
can only handle unitary matrices, the block-encoding tech-
nique consists in embedding a non-unitary matrix into a
unitary one [9], [10]. Namely a general matrix A ∈ CN×N

(with N = 2n) is encoded into a unitary matrix U as

U =

[
A ·
· ·

]
.

The matrix A can be expressed from the unitary U using two
projectors Π̃ and Π with

A = Π̃UΠ.

When we apply U to |0⟩a |ψ⟩d , where |0⟩a corresponds to
the ancilla qubits and |ψ⟩d corresponds to the data qubits, we
get

U (|0⟩a |ψ⟩d) = |0⟩aA |ψ⟩d + · · · .

The literature provides several block-encoding methods to
encode an arbitrary matrix into a unitary. The Linear Combi-
nation of Unitaries (LCU) method is a versatile approach to
encode matrices [12]. It consists in representing the matrix A
as a weighted sum of unitary operators A =

∑
j αjUj .This

method relies on the state preparation of the coefficients αj

using ancillary qubits and controlled operations. This method
can be used for general matrices [25]. The Fast Approximate
Block Encoding (FABLE) algorithm [10] provides an efficient
way to construct an approximation of block-encoding by
eliminating the negligible terms and removing useless controls
in the LCU approach. This algorithm achieves a complexity
bounded byO(4n) gates for general and unstructured matrices.
However it is also possible to take advantage of the sparsity
and the structure of some matrices to reach a complexity in
O(poly(n)) [9].

2) QSVT definition: The Quantum Singular Value Trans-
formation (QSVT) is a matrix function that operates on
the singular values of a matrix using a quantum computer
[15]. Given a matrix A ∈ CN×N with the Singular Value
Decomposition (SVD)

A =WΣV †

(Σ = diag(σ1, . . . , σN) and W, V unitary matrices), given a
polynomial P of degree d, then the QSVT of A using P is
expressed by

WΣV † =

{
WP (Σ)V † if d is odd,

V P (Σ)V † if d is even.

However, the QSVT imposes some constraints on the poly-
nomial used in the transformation [15], [29]:

• P has parity-(d mod 2),
• ∀x ∈ [−1, 1], |P (x)| ≤ 1,
• ∀x ∈ (−∞,−1] ∪ [1,∞), |P (x)| ≥ 1,
• if d is even, then ∀x ∈ R, P (ix)P ∗(ix) ≥ 1.
3) QSVT implementation: If the condition above are re-

spected, there exists a vector of phases Φ = {ϕ1, . . . , ϕd} ∈
Rd such that we can define an alternating phase modulation
sequence operator UΦ such that:
if d is odd,

UΦ = eiϕ1(2Π̃−I)U

(d−1)/2∏
j=1

(
eiϕ2j(2Π−I)U†eiϕ2j+1(2Π̃−I)U

)
(2)

and if d is even,

UΦ =

d/2∏
j=1

(
eiϕ2j−1(2Π−I)U†eiϕ2j(2Π̃−I)U

)
. (3)

This operator can be used to apply the QSVT in a quantum
computer, according to the polynomial P , to the matrix A

QSV TP (A) =

{
Π̃UΦΠ, if d is odd

ΠUΦΠ, if d is even

Remark 1. For a problem of size 2n with a polynomial of
degree d, then it comes from [15]) that the alternating phase
modulation sequence described in Equations (2) and (3) can
be efficiently implemented using

• n data qubits,
• a single ancilla qubit,
• d calls to the block-encoding U and U†,
• d calls to the operators of the form eiϕ(2Π−I) and
eiϕ(2Π̃−I).

Then the circuit’s depth and complexity scale logarithmically
with the problem dimension and linearly with the degree of
the polynomial.

4) Solving linear systems with QSVT: To solve LS problems
via the QSVT we need to find an odd-degree polynomial
approximation of the inverse function that fits the requirements
given in Section II-A2. By applying this polynomial P for the
QSVT of the matrix A† we get:

QSV TP (A†) = V P (Σ)W † ≈ V Σ−1W † = A−1,

where Σ−1 = diag(σ−1
1 , . . . , σ−1

N).
In practice we want to find an ϵ

2κ -approximation to 1
2κ

1
x ,

where κ is the condition number of the matrix to be inverted,
and ϵ the error on [−1, 1] \ [−1

κ ,
1
κ]. The inverse function is

difficult to approximate with a polynomial (not continuous,
infinite values in 0...). We need to find an odd function
approximating the inverse function on [−1, 1] \ [−1

κ ,
1
κ] that

would be easier to approximate using a polynomial. A function
that can be used is

fϵ,κ(x) =
1− (1− x2)b

x
,

where b(ϵ, κ) = ⌈κ2log(κ/ϵ)⌉ [15].
Then this function can be ϵ-approximated by the polynomial

P
1/x
2ϵ,κ(x) = 4

D∑
j=0

(−1)j
2−2b

b∑
i=j+1

(
b+ i

2b

)T2j+1(x),

(4)
where Ti(x) is the Chebyshev polynomial of first kind

of order i, and D(ϵ, κ) = ⌈
√
b(ϵ, κ) log(4b(ϵ, κ)/ϵ)⌉ [30].

Using Chebyshev polynomials to perform the polynomial
approximation (instead of expressing the approximation in
the canonical basis) highly reduces the impact of Runge’s
phenomenon when working with high degree polynomials
[35].

However, this polynomial does not fit the conditions of the
QSVT, because it is not necessarily bounded in magnitude
by 1 for x ∈

[−1
2κ ,

1
2κ

]
. To enforce the magnitude to be

bounded, we need to multiply this polynomial by another one.
A polynomial that approximates a rectangular function will fit
these constraints [30].

One of the main challenges in solving linear systems using
QSVT lies in accurately approximating the inverse function
with a polynomial, without drastically increasing the polyno-
mial’s degree. This constraint impacts the achievable accuracy
in linear system solving and/or limits the maximum condition
number that can be addressed. Current state-of-the-art methods
achieve a precision of 10−5 for condition numbers as large as
106 [32]. A summary of error analysis for the polynomial
approximation and the resulting forward error on the LS
solution can be found in [28, p. 125].

B. Mixed-precision iterative refinement for linear systems

Iterative refinement [19], [38] is a well-known technique
that improves a computed solution x̃ to Ax = b (step 0) by
performing the following steps:

1) compute the residual r = b−Ax̃,
2) solve Ae = r to obtain the correction vector e,
3) update x̃← x̃+ e which gives a x̃ “closer” to the exact

solution x.
This process can then be repeated until we obtain a satisfying
x̃. Using the same precision arithmetic throughout the process
(fixed-precision iterative refinement) is classically used to
improve the accuracy of a computed solution or added to
ameliorate a potentially instable solver [19, p. 232]. However,
with the emergence of processors that propose much faster
computation using lower precision arithmetic, it became attrac-
tive to combine different precisions in order to exploit the high
performance provided by some processors or computational

units (e.g., tensor cores for NVIDIA GPUs), resulting in so-
called mixed-precision iterative refinement algorithms.

When solving linear systems, mixed-precision is of interest
when the refinement (computed in higher precision) is cheap
compared to the computation of the first x̃ (computed in lower
precision). In mixed-precision iterative refinement for general
matrices, the most expensive tasks are the initial solution of
Ax = b (step 0) and the successive solves of Ae = r (step 2)
which are then achieved in lower precision. On the other hand
the residual and the updated x̃ (steps 1 and 3) are computed in
higher precision. Algorithm 1 gives the precisions that are used
for each task of the algorithm. When the solves are performed
using LU factorization, then we can use the L and U factors
produced in step 0 to achieve step 2, which still reduces the
computational cost of the overall process.

A general framework that describes mixed-precision algo-
rithms for linear systems can be found in [11]. A special
case can be derived that corresponds to a common use in
heterogeneous computing (see e.g., [4]) where we have a
working (high) precision u (e.g., double precision, u = 10−16)
and a low precision ul (e.g., single precision, u = 10−8). In
this situation the most expensive part is performed at precision
ul on an accelerator like a GPU to take advantage of low
precision arithmetic while the other steps remain executed on
the CPU.

Algorithm 1 Mixed-precision linear system solution using 2
precisions.

Input: A ∈ RN×N , b ∈ RN stored at precision u with
u≪ ul.
Compute a solution x0 to Ax = b at precision ul.
while desired accuracy not reached do

Compute ri = b−Axi at precision u.
Solve Aei = ri at precision ul.
Update xi+1 = xi + ei at precision u.

end while

The limiting accuracy does not depend on ul in the system
solving Aei = ri, it only depends on the choice for u [20].
Therefore we can work with u≪ ul and still get an accurate
result if u is well chosen. Traditionally, we have u = u2l to
get a limiting accuracy of order u. Note that a large value of
ul accelerates each iteration but requires more iterations.

III. ITERATIVE REFINEMENT FOR QSVT-BASED LINEAR
SYSTEM SOLUTION

A. Algorithm

Suppose we can solve Ax = b via the QSVT method with
a (low) accuracy ϵl, i.e., that can produce a solution x̃ such
that ∥x− x̃∥ ≤ ϵl∥x∥. Following [28, p. 126], to obtain an
accuracy (relative error) of order ϵl on the non-normalized
solution x̃, we need to approximate the inverse function on
[−1,−1/κ] ∪ [1/κ, 1] with an error ϵ′ = O(ϵl/κ).

We want to improve the quality of the solution given by
the QSVT described in Section:II-B by refining it in higher

precision u as presented in Algorithm 2 until we achieve
an accuracy ϵ. In this algorithm we will use two different
types of processors: the solving phases via the QSVT will be
achieved on a quantum processor (QPU) while the residual ri
and the correction to the solution xi+1 will be computed on
a classical processor (CPU). Note that in practice the QSVT
routine, like most quantum algorithms, is by nature hybrid
and not fully executed on the QPU. Indeed some tasks are
performed on the CPU (matrix decomposition before block-
encoding, preprocessing of the state preparation, computation
of angles for the polynomial approximation, post-processing
after measurement). Note also that the hybrid scheme of
Algorithm 2 requires to store A and b in a precision at least
u on the CPU.

Remark 2. One particularity of using iterative refinement
in quantum algorithms is that we deal with quantum states.
Therefore before solving Ax = b, we need to normalize b as

A
x

∥b∥
=

b

∥b∥
.

The sampling at the end of the QSVT will provide η = x
∥x∥

and we are able to recover ∥x∥ by solving the minimization
problem

argminµ∈R|A(x+ µη)− b|.

This phase occurs for each call to the QSVT routine and is
performed on the CPU device.

The stopping criterion for our iterative refinement will be
based on the scaled residual defined by ω = ∥b−Ax̃∥

∥b∥ . We aim
at finding x̃ such that ω ≤ ϵ. When κ is not too large, ω
classically provides close bounds for the relative error since
we have (see, e.g., [26, p. 68])

ω

κ
≤ ∥x− x̃∥

∥x∥
≤ κω. (5)

Moreover ω is independent to scaling of Ax and b by a same
coefficient, which will occur because quantum algorithms
require b to be normalized (see Remark 2).

Algorithm 2 Iterative refinement for QSVT-based linear sys-
tem solution.

Input: A, b, QSVT accuracy ϵl, targeted accuracy ϵ at
precision u.
Compute x0 = A−1b at accuracy ϵl using QSVT (QPU).
while accuracy ϵ is not reached on xi do

Compute ri = b−Axi in high precision u (CPU).
Compute ei = A−1ri at accuracy ϵl with QSVT (QPU).
Update xi+1 = xi + ei in high precision u (CPU).

end while

To compute x0 we first need to generate all the quantum
circuits/routines that will be executed on the QPU. This gener-
ation is called quantum circuit synthesis, which corresponds in
classical computing to the compilation phase, and is executed
on a classical computer. Computing x0 requires the use of 3
quantum routines:

• State preparation implementation for the normalized
value of b,

• Block-encoding of A†,
• QSVT routine implementing A−1 (relying on the block

encoding of A†).
Quantum routines, once compiled and transferred to the

QPU, do not have to be redefined. In particular, the concept
of “linker-loader”, widely used in classical computing, is part
of the architecture for integrating QPUs into HPC resources
(see, e.g., Figure 4 in [5]). Thus, each iteration of Algorithm 2
requires to transfer a reduced amount of data compared
to computing x0 (since only ri needs to be encoded and
transferred to the QPU).

Remark 3. We point out that the result is obtained through
sampling/measurement. Consequently, this hybrid algorithm
relies on the “collapse” of the quantum solution and cannot
be used in a subsequent quantum algorithm, except if we
re-encode the solution in the quantum computer via state
preparation.

B. Convergence and accuracy

In this section we compute the scaled residual obtained
after each iteration of the refinement and a bound on the
iteration count. In our demonstrations we omit the effect of
rounding errors but the high precision u (unit roundoff) used
for CPU computations should be chosen accordingly to the
target precision ϵ, a safe choice being u = θϵ with θ ≤ 1.

Theorem III.1. Suppose the QSVT can solve Ax = b with low
accuracy ϵl with ϵlκ < 1 and that we apply mixed-precision
iterative refinement as given in Algorithm 2 with high precision
u when computing the residual and solution update. Then
after i iterations we have ∥ri∥ ≤ (ϵlκ)

i+1∥b∥. The number
of iterations to obtain a solution x̃ such that ∥b−Ax̃∥

∥b∥ ≤ ϵ is
bounded by ⌈log(ϵ)/ log(ϵlκ)⌉.

Proof. We first compute x0 with the QSVT with ∥x− x0∥ ≤
ϵl∥x0∥. Then using the left part of Equation (5) we have

∥r0∥ = ∥b−Ax0∥ ≤ ϵlκ∥b∥.

Then for the first iteration we have

∥r1∥ = ∥b−Ax1∥ = ∥b−A(x0 + e0)∥ = ∥r0 −Ae0∥.

Using again Equation (5) to the linear system Ae = r0 we get

∥r1∥ = ∥r0 −Ae0∥ ≤ ϵlκ∥r0∥ ≤ (ϵlκ)
2∥b∥.

Then by straightforward recurrence on i we obtain

∀i, ∥ri∥ ≤ (ϵlκ)
i+1∥b∥.

The desired final error ϵ will be obtained when we will have
∥b−Axi∥
∥b∥

≤ (ϵlκ)
i+1 ≤ ϵ,

which yields i ≤ log(ϵ)/ log(ϵlκ) − 1 and thus
⌈log(ϵ)/ log(ϵlκ)⌉ will be an upper bound for the iterative
refinement process.

Theorem III.1 states that the convergence of Algorithm 2 is
ensured as long as ϵlκ < 1. The scaled residual contracts by a
factor ϵlκ at each iteration until it reaches a maximum value of
O(ϵ) after at most imax = ⌈log(ϵ)/ log(ϵlκ)⌉ iterations. The
quantity imax will be used in the following section to evaluate
the complexity of the linear system solver.

C. Complexity analysis

Since Algorithm 2 is hybrid, the resulting complexity in-
cludes quantum and classical costs which are presented in this
section. We also mention the data communication between the
2 devices.

1) Quantum cost: The quantum complexity of the QSVT
(denoted by CQSV T and detailed in Remark 1) mainly relies
on the cost B of the block-encoding circuit used to encode
A†, which depends on the chosen block-encoding method
(see Section II-A1). Then the quantum complexity of the
mixed-precision QSVT solver depends on the 3 following
components:

• The number of calls to the solver is evaluated using the
upper bound provided in Theorem III.1 for the mixed-
precision solver.

• The complexity of the QSVT CQSV T , which corre-
sponds to the cost of the multiple calls to the block-
encoding. We recall that the number of calls to the block-
encoding is given by the degree of the polynomial as
explained in Remark 1.

• The number of samples necessary to achieved a targeted
error ϵ is O(1/ϵ2).

Then we have

Total complexity = #solves × CQSV T × #samples.

In Table I, we compare the complexity when using directly
QSVT in high precision (one call to the QSVT and ϵl = ϵ)
and when using iterative refinement in mixed-precision.

QSVT only QSVT with iterative refinement

solves 1 ≤
⌈

log(ϵ)

log(κ ϵl)

⌉
CQSV T O (B κ log(κ/ϵ)) O (B κ log(κ/ϵl))

samples O(1/ϵ2) O(1/ϵ2l)

Total O
(
Bκ
ϵ2

log(κ/ϵ)

)
O
(⌈

log(ϵ)

log(κ ϵl)

⌉
Bκ
ϵ2l

log(κ/ϵl)

)

TABLE I: Quantum cost for QSVT-based LS solution with
and without iterative refinement.

Using iterative refinement jointly with QSVT to solve linear
systems provides some advantages. First, working with a
lower precision decreases the number of samples needed to
reach this precision. Actually, to get a precision ϵ we need
O(1/ϵ2) samples, and then we need to run the quantum
circuit O(1/ϵ2) times. Then, something more specific to the
QSVT is that we can adapt the precision of the polynomial

approximation of the inverse function to the accuracy ϵl used
in the iteration. Reducing this precision also reduces the degree
of the polynomial and the resulting number of calls to the
block-encoding U of A† (and U†). Finally we will verify
in our experiments in Section IV that, for our experimental
values of ϵ, ϵl and κ (with ϵ < ϵl < 1/κ) and using less
than ⌈log(ϵ)/ log(ϵlκ)⌉ iterations, the quantum cost is smaller
when using iterative refinement.

2) Classical cost: First, the QSVT (with or without iterative
refinement) requires to pre-process (on a classical computer)
the input matrix to create its block-encoding circuit [17],
[25]. This task can be computationally expensive especially
for dense and unstructured matrices (e.g., O(n4n) flops us-
ing [17]). In both columns of Table I this pre-processing step
is performed only once (for the iterative approach the result is
reused by the QPU throughout the iterations). Another initial
computation consists in finding the phases Φ for the QSVT,
using algorithm such as [13], [32]. The computational cost
of this task can scale linearly with the condition number κ
(see [32]). An additional cost concerns the state preparation of
the right-hand sides with the generation of the corresponding
circuits. For instance the algorithm provided in [23] relies
on a tree that needs to be classically computed and can be
performed in O(N) flops. Then, for the quantum iterative
refinement method we need to perform some processing on
the CPU before and after each solve. These tasks consist in
normalizing the residual before the solve, then de-normalizing
the result sent back from the QPU at each iteration (see Re-
mark 2) and finding the associated residual. The normalization
can be performed in O(N) flops and finding the residual is a
matrix-vector operation (O(N2) flops). The de-normalization
step can be performed for example using the Brent’s method
[7] (in the worst case scenario the complexity is O(log(1/ϵ))).

3) Remarks on data communication: Our algorithm in-
volves data communication between the CPU and the QPU. At
the beginning we send the circuit representation of the block-
encoding of A† (denoted as BE(A†)) from the CPU to the
QPU. This communication cost will depend on the matrix A
but also on the method used to perform the block-encoding
and that determines the circuit’s size (see Section II-A1). This
data transfer has to be performed only once because the matrix
A remains unchanged during the whole refinement process.
Another transfer concerns the vector of phases Φ used in the
QSVT circuit. This vector is of size d, where d is the degree of
the polynomial approximating the inverse function in Equation
(4). Then at each solve step, we need to transfer the right-hand
sides (b and the residuals) from the CPU to the QPU. This is
performed by sending the corresponding circuit description for
state preparation (denoted as SP(b), SP(ri), etc). The size of
these circuits depends also on the method used to perform the
state preparation. Moreover, after the solve phase, we need to
transfer from the QPU to the CPU the sampled solution, which
is a vector of size N = 2n. These data transfers between CPU
and QPU are depicted in Figure 1.

CPU

QPU

BE(A†)
+ SP(b)
+ UΦ

x0

First solve

SP(r0)

x1

Iteration 1 · · ·

SP(rimax)

ximax

Final iteration

Time

Fig. 1: CPU-QPU communication scheme for Algorithm 2
(BE=block-encoding, SP=state preparation).

4) Practical example: Let us consider the one-dimensional
Poisson equation

∀x ∈ (0, 1),−u′′(x) = f(x), (6)

with the Dirichlet boundary conditions u(0) = u(1) = 0. This
problem can be solved using the finite difference method by
discretizing Equation (6) with a step h = 1/(N + 1) and
uj = jh, fj = f(jh).

The solution can be obtained by solving the linear system
provided in Equation 7.

1

h2

2 −1 0
−1 2 −1

−1
.
. . . 2 −1

0 −1 2

u1

...
uN

 =

 f1
...
fN

 . (7)

a) Block-encoding: For the matrix given in Equation (7)
(with N = 2n) we use the block-encoding technique provided
in [37] resulting in the circuit given in Figure 2.

b) Complexity: In this section we detail the quantum and
classical complexities of our hybrid algorithm when solving
Equation (7). The classical cost is expressed in floating-point
operations (flops) and the quantum cost is expressed in number
of T-gates, because the depth of the circuit requires to use a
fault-tolerant quantum computer [21]. The subroutines used in
our algorithm are:

• Tree-based state preparation (SP) described in [23],
• Block-encoding (BE) provided in [37],
• QSVT quantum circuit (UΦ...) proposed in [15],
• QSVT phases (Φ) computed as in algorithm given in [32],
• Solution via Brent’s method [7] (de-normalization, see

Remark 2).

Fig. 2: Circuit for the block-encoding of the tridiagonal matrix
in Equation (7).

In Table II we summarize the classical and quantum costs
for the first solve (First) and at each iteration (Iter). The block-
encoding of the tridiagonal matrix is predetermined (expressed
analytically in [37]) and requires no classical cost. We refer
to [24], [34] for the decomposition in T gates of the multi-
controlled Toffoli gates and adders for the different quantum
circuits of our implementation.

Classical Quantum

First

SP O(2n) O(polylog(n))
BE - O(nκ log(κ/ϵl))
QSVT (Φ, UΦ...) O(κ) O(nκ log(κ/ϵl))
Solution O(4n + log(1/ϵ)) -

Iter

SP O(2n) O(polylog(n))
BE - O(nκ log(κ/ϵl))
QSVT (Φ, UΦ...) - O(nκ log(κ/ϵl))
Solution O(4n + log(1/ϵ)) -

TABLE II: Complexity for solving the Poisson equation with
mixed precision iterative refinement.

We point out that this use case is given as an example to
illustrate the complexity breakdown of our algorithm. Current
classical solvers are efficient at solving this type of linear
systems (in O(N) flops [8]). Moreover the condition number
κ exhibits a rapid increase with the problem size (in O(N2)
with no preconditioning [27]) which makes this linear system
solution very expensive for large matrices using QSVT, given
the current state of the art.

IV. NUMERICAL EXPERIMENTS

A. Experimental framework

We have implemented the QSVT solver and the iterative
refinement using Python and the myQLM simulator [14]. Our
implementation relies on the following components:

• State preparation using the tree-based method described
in [23],

• Polynomial approximation of the inverse function as
detailed in [15],

• Algorithm for determining the QSVT angles: for small
condition numbers (κ < 100), we perform the numerical
computation of the angles, using the symmetric QSP
approach from [13]. For bigger condition numbers, we
use the estimation approach provided in [32],

• Implementation of the QSVT implemented with myQLM,
following [15],

• Iterative refinement in Python, using numpy and scipy
libraries.

In the following experiments, the size of the problem was
set to N = 16 i.e., n = 4 qubits. The matrix A ∈ RN×N and
the vector b ∈ RN are both randomly generated, with ∥b∥ =
1 for simplicity. We have also simulated the algorithm with
the tridiagonal matrix given in Section III-C4. The obtained
results are similar in terms of convergence and then they are
not mentioned in the following. Note that for each simulation
we limited the execution time to one hour, which enabled us
to simulate problems with condition numbers of O(102).

B. Results
We present in Figure 3 the evolution of the scaled residual

obtained at each iteration, until convergence. We consider a
small condition number κ = 10 and three values for ϵl. The
targeted accuracy is ϵ = 10−11. We observe that in all cases
the bound ⌈log(ϵ)/ log(ϵlκ)⌉ obtained in Theorem III.1 is a
sharp estimate for the iteration count. We also observe that due
to the small values of κ the scaled residual is here also a good
estimate of the forward error, as expected from Equation (5).

Fig. 3: Scaled residual until convergence for κ = 10, targeted
accuracy ϵ = 10−11, and various values of ϵl.

In Figure 4 we present the evolution of the scaled residual
at each iteration for larger condition numbers. For these
experiments, the polynomial approximation and the QSVT
angles are computed by the algorithm implemented in [32].
In this context, we only have control on κ since the value
of ϵl is automatically determined by the algorithm from [32].
Our experiments show that we obtain a satisfying convergence
with a number of iterations still lower than the bound from
Theorem III.1.

Fig. 4: Scaled residual until convergence, κ = 100, 200, 300.

Fig. 5: Complexity in calls to block-encoding for QSVT with
and without iterative refinement, κ = 2.

Then, in Figure 5, we compare the complexity of the LS
solving with κ = 2 for the QSVT with and without mixed-
precision iterative refinement. In this numerical experiment
we consider that the main cost of the QSVT relies in the
block-encoding, so the complexity is expressed as the number
of calls to the block-encoding of the matrix A†. The results
for the QSVT without iterative refinement are extrapolated
from the theoretical complexity provided in Table I since the
computation would be intractable for both the polynomial
approximation and the simulation of the quantum circuit. On
the contrary, the results for the QSVT with mixed-precision
iterative refinement are obtained after running our algorithm
using a quantum simulator and choosing ϵl ≈ 1/κ. The
method with iterative refinement is clearly advantageous for
ϵ << ϵl. Note that the two curves coincide at ϵ = ϵl. With
larger condition numbers, the gap between the two curves
would be bigger, according the complexity figures given in
Table I.

V. CONCLUSION

We have proposed a mixed-precision hybrid CPU/QPU
solver for linear systems that computes a first solution in
low precision using the (expensive) QSVT method and then

refines the solution in higher precision to achieve the desired
accuracy. The main advantage of this method is that it enables
us to achieve satisfying accuracy by using affordable quantum
resources since we can use a limited precision for the QSVT
solver. This solver illustrates what a typical hybrid CPU/QPU
algorithm would be in the future that would leverage the
strength of each architecture.

The interest of developing such methods is to exploit
existing theoretical results for mixed-precision algorithms used
in classical computing. Our algorithm has been tested in
simulation only which reduces the possibility of scaling to
larger problems or handling ill-conditioned matrices. It re-
quires further testing on real quantum machine when error-free
hardware will be easily accessible to the scientific community.

ACKNOWLEDGEMENT

This work is part of the HQI initiative (www.hqi.fr)
and is supported by France 2030 under the French National
Research Agency award number “ANR-22-PNCQ-0002”.

REFERENCES

[1] A. Abdelfattah, H. Anzt, J. Dongarra, M. Gates, A. Haidar, J. Kurzak,
P. Luszczek, S. Tomov, I. Yamazaki, and A. YarKhan. Linear algebra
software for large-scale accelerated multicore computing. Acta Numer-
ica, 25:1–160, 2016.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, 1999. 3rd
edition.

[3] M. Baboulin, S. Donfack, O. Kaya, T. Mary, and M. Robeyns. Mixed
precision randomized low-rank approximation with GPU tensor cores.
In Euro-Par 2024: Parallel Processing - 30th European Conference on
Parallel and Distributed Processing, volume 14803 of Lecture Notes in
Computer Science, pages 31–44. Springer, 2024.

[4] Marc Baboulin, Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julie
Langou, Julien Langou, Piotr Luszczek, and Stanimire Tomov”. Acceler-
ating scientific computations with mixed precision algorithms. Computer
Physics Communications, 180:2526–2533, 2009.

[5] K. Bertels, A. Sarkar, T. Hubregtsen., M. Serrao, A. A. Mouedenne,
A. Yadav, A. Krol, and I. Ashraf. Quantum computer architecture:
Towards full-stack quantum accelerators. In 2020 Design, Automation
& Test in Europe Conference & Exhibition (2020). IEEE, 2020.

[6] Carlos Bravo-Prieto, Ryan LaRose, M. Cerezo, Yigit Subasi, Lukasz
Cincio, and Patrick J. Coles. Variational quantum linear solver. Quan-
tum, 7:1188, 2023.

[7] R. P. Brent. Algorithms for Minimization without Derivatives. Prentice-
Hall, Englewood Cliffs, NJ, 1973.

[8] William Briggs, Van Henson, and Steve McCormick. A Multigrid
Tutorial, 2nd Edition. SIAM: Society for Industrial and Applied
Mathematics; 2nd edition, 2000.

[9] Daan Camps, Lin Lin, Roel Van Beeumen, and Chao Yang. Explicit
quantum circuits for block encodings of certain sparse matrices. SIAM
Journal on Matrix Analysis and Applications, 45(1):801–827, 2024.

[10] Daan Camps and Roel Van Beeumen. FABLE: Fast approximate
quantum circuits for block-encodings. In 2022 IEEE International
Conference on Quantum Computing and Engineering (QCE), pages
104–113, 2022.

[11] Erin Carson and Nicholas J. Higham. Accelerating the solution of linear
systems by iterative refinement in three precisions. SIAM Journal on
Scientific Computing, 40(2):A817–A847, 2018.

[12] A. M. Childs and N. Wiebe. Hamiltonian simulation using linear com-
binations of unitary operations. Quantum Information and Computation,
12(11 - 12):0901–0924, 2012.

[13] Yulong Dong, Lin Lin, Hongkang Ni, and Jiasu Wang. Robust iterative
method for symmetric quantum signal processing in all parameter
regimes. SIAM Journal on Scientific Computing, 46(5):A2951–A2971,
2024.

[14] Eviden Quantum Lab. myQLM: Quantum Computing Framework, 2020-
2024. https://myqlm.github.io.

[15] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum
singular value transformation and beyond: exponential improvements for
quantum matrix arithmetics. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC ’19. ACM, 2019.

[16] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, Baltimore, 2013. Fourth edition.

[17] Lukas Hantzko, Lennart Binkowski, and Sabhyata Gupta. Tensorized
pauli decomposition algorithm. Physica Scripta, 99(8):085128, jul 2024.

[18] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum
algorithm for linear systems of equations. Physical Review Letters,
103(15), 2009.

[19] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.
SIAM, Philadelphia, 1996.

[20] Nicholas J. Higham and Theo Mary. Mixed precision algorithms in
numerical linear algebra. Acta Numerica, 31:347–414, 2022.

[21] Dominic Horsman, Austin G Fowler, Simon Devitt, and Rodney Van
Meter. Surface code quantum computing by lattice surgery. New Journal
of Physics, 14(12):123011, 2012.

[22] Travis S. Humble, Alexander McCaskey, Dmitry I. Lyakh, Meenambika
Gowrishankar, Albert Frisch, and Thomas Monz. Quantum computers
for high-performance computing. IEEE Micro, 41(5):15–23, 2021.

[23] Iordanis Kerenidis and Anupam Prakash. Quantum Recommendation
Systems. In 8th Innovations in Theoretical Computer Science Confer-
ence (ITCS 2017), volume 67 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 49:1–49:21, 2017.

[24] Tanuj Khattar and Craig Gidney. Rise of conditionally clean ancillae
for optimizing quantum circuits. arXiv:2407.17966, 2024.

[25] Océane Koska, Marc Baboulin, and Arnaud Gazda. A tree-approach
pauli decomposition algorithm with application to quantum computing.
In ISC High Performance 2024 Research Paper Proceedings (39th
International Conference), pages 1–11, 2024.

[26] Alan J. Laub. Computational matrix analysis. SIAM, Philadelphia,
2012.

[27] Byungjoon Lee and Chohong Min. Optimal preconditioners on solving
the Poisson equation with Neumann boundary conditions. Journal of
Computational Physics, 433:110189, 2021.

[28] Lin Lin. Lecture notes on quantum algorithms for scientific computation.
arXiv:2201.08309, 2022.

[29] Guang Hao Low, Theodore J. Yoder, and Isaac L. Chuang. Methodology
of resonant equiangular composite quantum gates. Physical Review X,
6(4), 2016.

[30] John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L. Chuang.
Grand unification of quantum algorithms. PRX Quantum, 2(4), 2021.

[31] Mohammadhossein Mohammadisiahroudi, Brandon Augustino, Pouya
Sampourmahani, and Tamás Terlaky. Quantum computing inspired
iterative refinement for semidefinite optimization. Mathematical Pro-
gramming, 01 2025.

[32] I. Novikau and I. Joseph. Estimating QSVT angles for matrix inversion
with large condition numbers. Journal of Computational Physics,
525:113767, 2025.

[33] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. HPL - a
portable implementation of the high-performance Linpack benchmark
for distributed-memory computers, 2018.

[34] Maxime Remaud and Vivien Vandaele. Ancilla-free quantum adder with
sublinear depth. arXiv:2501.16802, 2025.

[35] T. J. Rivlin. Chebyshev Polynomials: From Approximation Theory to
Algebra and Number Theory. Dover, 2020.

[36] Yoshiyuki Saito, Xinwei Lee, Dongsheng Cai, and Nobuyoshi Asai.
An iterative improvement method for HHL algorithm for solving linear
system of equations. arXiv:2108.07744, 2021.

[37] Sunheang Ty, Renaud Vilmart, Axel TahmasebiMoradi, and Chetra
Mang. Double-logarithmic depth block-encodings of simple finite
difference method’s matrices. arXiv:2410.05241, 2024.

[38] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall
Series in Automatic Computation. Prentice-Hall, 1963.

[39] Muqing Zheng, Chenxu Liu, Samuel Stein, Xiangyu Li, Johannes
Mülmenstädt, Yousu Chen, and Ang Li. An early investiga-
tion of the HHL quantum linear solver for scientific applications.
arXiv:2404.19067, 2024.

	Introduction
	Background
	Quantum Singular Value Transformation (QSVT)
	Block-encoding of matrices
	QSVT definition
	QSVT implementation
	Solving linear systems with QSVT

	Mixed-precision iterative refinement for linear systems

	Iterative refinement for QSVT-based linear system solution
	Algorithm
	Convergence and accuracy
	Complexity analysis
	Quantum cost
	Classical cost
	Remarks on data communication
	Practical example

	Numerical experiments
	Experimental framework
	Results

	Conclusion
	References

