
Metaprogramming dense linear algebra solvers
Applications to multi and many-core architectures

Ian Masliah
University of Paris-Sud and Inria,

F-91405 Orsay, France
Email: ian.masliah@lri.fr

Marc Baboulin
University of Paris-Sud and Inria,

F-91405 Orsay, France
Email: marc.baboulin@lri.fr

Joel Falcou
University of Paris-Sud and Inria,

F-91405 Orsay, France
Email: joel.falcou@lri.fr

Abstract—The increasing complexity of new parallel architec-
tures has widened the gap between adaptability and efficiency of
the codes. As high performance numerical libraries tend to focus
more on performance, we wish to address this issue using a C++
library called NT 2. By analyzing the properties of the linear
algebra domain that can be extracted from numerical libraries
and combining them with architectural features, we developed
a generic approach to solve dense linear systems on various
architectures including CPU and GPU. We have then extended
our work with an example of a least squares solver based on
semi-normal equations in mixed precision that cannot be found
in current libraries. For the automatically generated solvers, we
report performance comparisons with state-of-the-art codes, and
show that it is possible to obtain a generic code with a high-level
interface (similar to MATLAB) which runs either on CPU or GPU
without generating a significant overhead.

I. INTRODUCTION

A major concern when developing dense linear
algebra software is to propose a user-friendly Application
Programming Interface (API) that is as performant as BLAS-
like [1] optimized routines. Moreover, with the increasing
parallelism and heterogeneity as well as the ever increasing
data-communication costs, numerical libraries often require
to be modified or redesigned in order to take advantage of
new features in parallel architectures [2]. In our study we
consider the dense linear algebra libraries LAPACK [3] (serial
library for CPU processors) and MAGMA [4] (for Graphics
Processing Units). The disparity between these libraries that
target different architectures illustrate one of the issues in
designing optimized linear algebra software. While being able
to maintain a similar interface for the routines, the code and
structure of all algorithms ported from LAPACK to MAGMA
has to be rewritten to match the architectural features and the
programming language of the accelerators. Furthermore, these
libraries are implemented using low-level languages like C or
FORTRAN and thus cannot provide a high-level interface that
would be closer to the specification language of the numerical
linear algebra practitioner without losing performance. This
issue is represented by the abstraction/efficiency trade-off
problem where raising the abstraction level with object-
oriented and generic programming techniques is obtained at
the cost of performance. However, performance inhibits the
flexibility and adaptability of libraries.

Some solutions have been proposed in recent years but
they tend to solve partially the abstraction/efficiency trade-off
problem. The method followed by the Formal Linear Algebra

Methods Environment (FLAME) with the Libflame library [5]
is a good example. It offers a framework to develop dense
linear solvers using algorithmic skeletons [6] and an API
which is more user-friendly than LAPACK, giving satisfactory
performance results.

Another method is the one used by code generation projects
like Spiral [7] for signal processing or other linear algebra
libraries such as Design by transformation [8], Build to Or-
der [9], or Hydra [10] that develop code generation through the
use of a Domain Specific Language (or DSL) to express data
dependencies. A more closely related work is the linear algebra
compiler by Fabregat-Traver and Bientinesi [11]. It is based
on the Mathematica language and optimizes the algorithms
by reusing variables and mapping to BLAS function calls.
By definition, a DSL is a computer language specialized for
a particular application domain. This implies that the use
of a DSL requires a pre-processor and a custom compiler
or interpreter. Furthermore, only the DSL compiler is aware
of the underlying compiler existence limiting the integration
of the DSL with other components such as an Interagred
development environment (IDE) [12].Since writing a compiler
is very complex to optimize and time-consuming while often
not re-usable, we do not wish to do such a task.

A more generic approach is the one followed in recent
years by C++ libraries built around expression templates [13]
or other generative programming [14] principles to design
a Domain Specific Embedded Language (or DSEL). DSEL
are languages implemented inside another host language. De-
signing a DSEL is easier than a DSL as it reuses existing
compilers and relies on domain dependent analysis to generate
efficient code. Problems such as copy elision and return value
optimization that are implemented by compilers are often
not exploited by complex DSLs like MATLAB which incurs
copy penalities and slow down algorithms. Examples of such
libraries are Armadillo [15] and MTL [16]. Armadillo provides
good performance with BLAS and LAPACK bindings and
an API close to MATLAB [17] for simplicity. However it
does not provide a generic solver like the MATLAB routine
linsolve that can analyze the matrix type and choose the correct
routine to call from the LAPACK library. It also does not
support GPU computations which are becoming mandatory for
medium to large dense linear algebra problems. In a similar
way, while MTL can topple the performance of vendor-tuned
codes, it does neither linsolves-like implementation nor GPU
support. Other examples of such libraries include Eigen [18],

Flens [19], Ublas [20] and Blaze [21].

Our objective in this paper is to provide a solution to
the problems of portability and adaptability on new computer
architectures. To this end, we propose a hybrid solver for CPU
and GPU architectures with a single interface to solve dense
linear systems. Our solution is designed on top of NT 2 [22],
[23], an open-source scientific library written in C++ available
at www.github.com/NumScale/nt2. NT 2 provides a MATLAB-
inspired API and its implementation is based on a meta-
programming technique known as “expression templates” [13].
The contributions of this paper are the following.

• We propose an architecture aware binding between
NT 2 and LAPACK/MAGMA based on type tags
to dispatch between the different architectures and
runtime back-ends in an extensible way.

• We provide an implementation of linsolve (in ref-
erence to the MATLAB routine) that takes into ac-
count both hardware and algorithmic features to select
and generate at compile time the proper LAPACK-
/MAGMA routine from the high-level C++ code,
mapping over 160 kernels. Note that the support of
different factorizations (QR, Cholesky, LU, SVD) is
also provided in NT 2 to facilitate the development of
new solver.

• An application based on a linear least squares solver
(using mixed precision) that uses of the already avail-
able routines for several architectures in NT 2. This
application can therefore be written with a single
interface and automatically generated for CPU or GPU
while showing a level of expressiveness similar to
MATLAB.

This paper is organized as follows: in Section II, we
describe various programming techniques that combine algo-
rithmic and architectural features in libraries. The methods that
we used in NT 2 are then introduced. They enable us to achieve
re-use and adaptability of library codes while preserving
performance. In Section III-A, we show how to combine these
techniques in order to develop efficient dense linear algebra
software. Then, as an example of application, we present
in Section III-C the code generation of a mixed-precision
linear least squares solver for which we give performance
comparisons on CPU and GPU using respectively the QR
routines from LAPACK and MAGMA. To our knowledge such
a solver does not exist in public domain libraries LAPACK,
PLASMA [24] and MAGMA. Concluding remarks are given
in Section IV.

II. GENERATIVE PROGRAMMING FOR DESIGNING
NUMERICAL LIBRARIES

A. Optimization approaches based on a configuration space

As stated in Section I, developing complex linear algebra
software is a non trivial task due to the large amount of both
algorithmic and architectural requirements. These combined
factors create a configuration space containing the various
configurations available for a given system. Choosing the
correct combination of factors from a configuration space will
then ensure optimal performance.

Compiler techniques based on iterative compilation [25],
where several optimizations from a configuration space are
tested and the best one is selected, is a classical technique to
improve performance.

An example of these methods can be found in the
ATLAS [26] library which is based on using optimized
binaries. Each function’s binary is generated during the
installation phase with the iterative compilation technique.
The generation process is accelerated by a hierarchical tuning
system. In this system, the lower level functions are subject to
a large selection process ensuring their optimal performance.
High-level functions like BLAS 3 routines can then exploit
feedback from the previous steps of the configuration process.

A second method is based on a performance analysis
at runtime. For instance, a system like StarPU [27] uses a
monitored runtime system in which the performance of each
function on a given hardware configuration is monitored
in real-time. This monitoring allows StarPU to select the
most optimized version of the algorithm by changing its
parameters (tiling size, number of iterations,. . .) or the
targeted architecture (CPU, GPU, hybrid).

Both methods described above are valid approaches in
the field of high performance computing. However, in our
case, we aim at providing a library level system for such
exploration [28] that will complement the compilers work. One
way to do this is to use generative programming.

B. Generative programming in software development

Generative programming consists of bringing the benefits
of automation to software development. Following this
paradigm, a model can be drawn to implement the different
components [29] of a system. It is then possible to build a
generator that will combine these components based on a
generative domain model. This generator (or configuration
knowledge) will ensure the transition from a configuration
space with domain-specific concepts [30] and features to a
solution space that encapsulates expertise at the source-code
level. The code generation process will be hidden from the
end-user by various meta-programming techniques which turn
the user interface into a simple and clean API, where few to
none details about the algorithms and structures are visible.

Template meta-programming is a classical generative
programming technique in which templates are used by a
compiler to generate temporary source code. It is then merged
with the rest of the source code and finally compiled. The
output of these templates includes compile-time constants,
data structures, and functions. The use of templates can be
thought of as a compile-time execution that enables us to
implement domain-specific optimizations. The technique is
used by a number of languages, the most well-known being
C++ [31], D [32], Haskell [33] and OCaml [34].

www.github.com/NumScale/nt2

C. Domain engineering methods for active libraries

We call active libraries [35] a technique which com-
bines a set of generative programming and meta-programming
methods to solve the abstraction/efficiency trade-off problem
mentioned in Section I. The main idea is to perform high-
level optimization based on a semantic analysis of the code
before any real compilation process. Such informations and
transformations are then carried on by a meta-language that
allows the developer to embed meta-informations in the source
code itself, helping compilers to generate a better code by
using these semantic informations. Active libraries are often
implemented as DSEL.

Czarnecki proposed a methodology called Domain Engi-
neering Method for Reusable Algorithmic Libraries [36] (or
DEMRAL depicted in the blocks 1-3 of Figure 1) based on the
techniques described previously. DEMRAL is a DSEL-based
method where domain specific descriptors are used to represent
the various states of the system (represented as Block 1 in
Figure 1). The various combinations of descriptors represent
all the possible configurations in the system. In NT 2, these
parameters are available at the API level for the user. Once
these configurations have been implemented, it is possible to
program the parametric components that they represent (see
Block 2 in Figure 1). In NT 2, these would correspond to
the various skeletons available and various kernels for the
CPU. The final step is to build a generator that will take the
various descriptors as parameters, choose the corresponding
component and generate the concrete application at compile-
time based on this (see Block 3 in Figure 1). In NT 2, this
corresponds to the solver we have implemented which will be
described later on.

Fig. 1: Overview of the AA-DEMRAL process

DEMRAL can be seen as a specialization of a paradigm
like object-oriented programming, aspect programming or
model driven engineering [37]. While we can find a large

number of algorithms (N) and implementations for distinct
data structures (P), the problem is that combining them can
result in a large number of code to write (N ∗ P). Using
DEMRAL, only N generic algorithms and P data structure
descriptions are needed since the generator will choose the
correct domain-specific implementation from the configuration
space with the help of the configuration knowledge.

The DEMRAL methodology provides a high re-usability,
allowing components to be customized while retaining the
efficiency of statically configured code [38]. We extend it by
adding an architectural layer in the design with a ”Domain
specific architecture description” (block 4 of Figure 1) and
a specialized generator for GPUs (block 5 of Figure 1)
based on this description [39]. In NT2, this would represent
an extension to the API with a GPU tag and the addition
of GPU based skeletons and kernels based on the MAGMA
library. This enables us to have a separate specific generator
for accelerators that will create a generic component with the
appropriate marker that can then be combined with the already
existing ones.

III. APPLICATION TO LINEAR ALGEBRA SOLVERS

In this section, we describe our approach to automatically
generate linear algebra solvers on parallel architectures. Our
solution stems from the programming techniques combined
with a proper configuration space and smart containers for
data management on GPU.

A. Linear system solvers

The first step to build linsolve is to identify the key
properties of the configuration space and the proper way to
represent them. Once this analysis is done, we can refine these
properties into high-level abstractions that will parameterize
linsolve. These abstractions will then be used to define the
configuration knowledge necessary to ensure the transition to
the solution space. These properties represent the informations
necessary to dispatch on the various solvers that we can find
in the numerical libraries LAPACK and MAGMA. Concerning
dense linear systems, we can identify three main properties
that need to be taken into account: matrix structure, condition
number, and targeted architecture.

A matrix structure can be divided into subcategories that
can be identified statically (data type, storage scheme, matrix
type and storage format). The data type and storage scheme
parameters are already identified through the problem domain,
respectively being scalar entries (real, double or single/double
complex) and a dense matrix. The storage format is defined
by NT 2 and shares a common interface with FORTRAN77
(column-major arrays). The matrix types correspond to the
different ones available in the numerical libraries LAPACK
and MAGMA (e.g., general, symmetric, hermitian...).

The second domain corresponds to the conditioning of
the system. In current numerical libraries, the linear solvers
are usually based on LU or QR factorizations in fixed
precision, or mixed-precision algorithms [40] with iterative
refinement. It is not possible to identify statically if a system

is ill-conditioned since it requires expensive computations
which are not manageable at compile-time. Furthermore, it
would be too costly to estimate the condition number at
runtime for mixed-precision routines since it requires the
factored form of the matrix (the LAPACK function gecon
estimates the reciprocal condition number but requires the LU
form bringing the cost to θ(n3) for an n∗n matrix). However,
since current dense linear algebra libraries propose mixed
precision routines, it needs to be part of the configuration
space.

The last key domain of our solver is the dispatch be-
tween different architectures. As explained in Section I, the
architectural features of a GPU result in a very different
language compared to a CPU. The solution we used to solve
this abstraction problem is to provide through the use of a
DSEL (Section II-B) a common syntax between CPU and GPU
routines. Using architecture aware binding, we can then freely
decide whether to call LAPACK or MAGMA routines by dis-
patching on the different back-ends in an extensible way. It is
now possible to define a grammar that encapsulates these ideas
into a configuration space (see Section II-A). These parameters
are not mutually exclusive and can be extended/combined.

TABLE I: Configuration space parameter levels

0-Matrix type general | band | diagonal | symmetric | positive definite
1-Data type float | double | single/double complex
2-Precision fixed | mixed-precision
3-Conditioning no information | ill-conditioned
4-Storage scheme general | packed
5-Architecture CPU | GPU

Most of the parameters we can access are defined by the
user and therefore configurable at the API level. In MATLAB,
the linsolve routine does not take into account the data type,
and the matrix type needs to be defined in a parameter
structure containing the different matrix properties recognized
(lower/upper triangular, upper Hessenberg, symmetric, positive
definite, rectangular). While creating a matrix in NT 2, the user
has the possibility to define the matrix and data type which
are optimized as meta-data properties of the matrix, using the
following instruction:

nt2::table<double,nt2::symmetric_> a;

When calling linsolve, he will then have the possibility to give
additional information on the conditioning of the matrix either
as a parameter of the system:

x = nt2::linsolve(a,b,nt2::ill_conditioned_);

or of the matrix:

x = nt2::linsolve(nt2::ill_conditioned_(a),b);

It is also possible to ask for complementary information
as output like the reciprocal condition number returned by
LAPACK :

nt2::tie(x,r) = nt2::linsolve(a,b);

Once this is done, linsolve will be able to parse the
configuration space by reading out the nested domain-specific
features while assigning default values to the unspecified ones.

Figure 2 shows the various steps to perform a call to
linsolve with a symmetric matrix (here of size 5000) in NT 2

linked with the MAGMA library. The user starts by defining
the entry and output matrices with the correct description as
seen in Part 7 of Figure 2. When the code is analyzed by the
C++ compiler, the call corresponding to Part 1 of Figure 2 will
end up triggering the generation phase. The routine in Part 6 is
generated using a combination of the parameters mentioned in
Parts 2 to 5. This routine can be a LAPACK/MAGMA kernel
(if available, which is the case of Figure 2) or a kernel directly
implemented in NT 2. After the C++ compilation phase, we
obtain a code similar to the one given in Part 8.

1. x = linsolve(a,b)

2. Parameters

3. Shape

4. Architecture

5. Type

6. Magma dsysv(...)

none

symmetric

GPU

double

7. user code :
table<double,symmetric_ > a;
table<double> b,x;
a = rand(5000,as_<double>());
b = rand(5000,1,as_<double>());
a = mtimes(a,trans(a));

x = linsolve(a,b);

8. equivalent generated code :
table<double,symmetric_ > a;
table<double> b,x;
a = rand(5000,as_<double>());
b = rand(5000,1,as_<double>());
magma_dgemm(...)

magma_dsysv(...);

Fig. 2: Example of a generation process for a symmetric
system

B. Memory management for hybrid computation

When using GPU-based systems, we need to ensure data
consistency between the different physical memories. In this
section, we discuss how these techniques are used jointly with
linsolve. We can discern the two most common approaches to
CPU and GPU containers. The first one is to statically define
the locality of the container which is done in the Thrust
library [41], while the second uses a dynamic approach like
in SkePU [42].

The memory management mechanism in a dynamic ap-
proach allows to change the locality of a container and
reallocate the data. The container then needs to manage the

memory and ensure consistency between data and locality. In
this situation, it is not possible to statically define the locality
of a container. Therefore, our approach consists of adding
an architectural tag similarly to the matrix type tag on our
container (default locality is CPU). The purpose of this method
is to enable the user to write programs using GPU functions
in a transparent way.

nt2::table<double,nt2::gpu_> a;

It is then possible to ensure the transitions from CPU
to GPU memory by using explicitly the tag. This does not
prevent the decision-making process of the solver when no
locality tag is given by the user. The solver can generate a
GPU code performing data transfers from CPU to GPU as
well as the reverse. The generation process will choose the
architecture based on a combination of factors, mainly the
matrix size and the algorithm. The GPU tag can also hold
complementary informations passed as template parameters
of the tag.

The definition of container locality being static, it is easier
to define a data efficient memory management unit. Let’s use
the following scenario as an example :

x = nt2::linsolve(a,b);

From here, we can apply different strategies depending
on the locality of x, a and b. In a situation where all three
containers are on GPU (respectively CPU) memory there
will be no locality problem as various data are located on
the same device. However, the scenario where x is on the
GPU (respectively CPU) while a and b are on the CPU
(resp. GPU) will generate a conflict. The rules to solve
locality conflicts are static and do not depend on the runtime.
Therefore, the priority will be given to the locality of the result
x to ensure consistency between the data and container locality.

Experiments were carried out on a system using 2 sockets
of Intel Xeon E5645 2.40GHz and a Tesla C2075. We consider
single precision random square matrices of size 2000, 10000
and 20000 and we solve a system of linear equations Ax = b
using the LU factorization. The light grey bars in Figure 3
correspond to the following call made in NT 2 through linsolve
that can run either on CPU or GPU.

x = nt2::linsolve(a,b);

The dark grey bars correspond to C++ calls to either
the LAPACK function sgesv or the MAGMA function
magma_sgesv. These results show that automatically gener-
ated routines do not exhibit any overhead compared to direct
calls to LAPACK or MAGMA. Note that the performance of
all others generated routines does not incur any overhead as
well.

C. Application to linear least squares

In this section we illustrate how the generative program-
ming method described in Section II can be used to generate
automatically new implementations of algorithms and achieve
satisfactory performance.

CPU/2k GPU/2k CPU/10k GPU/10k CPU/20k GPU/20k
0

200

400

600

Architecture/matrix size

G
fl
op

/s

LAPACK/MAGMA
NT2

Fig. 3: Performance comparaison between LAPACK/MAGMA
routines and generated codes via NT2 for general dense linear
system solution

1) Solving least squares by semi-normal equations: We
consider the overdetermined full rank linear least squares
(LLS) problem minx∈Rn ‖Ax− b‖2, with A ∈ Rm×n,m ≥ n
and b ∈ Rm.

The most classical methods for solving linear least squares
problems are based on the QR factorization or the normal
equations. The latter method is twice cheaper (mn2 vs 2mn2

operations) but the error is then proportional to cond(A)2 [43,
p. 49]). However if A can be saved, we can also use the semi-
normal equations (SNE) method where we solve the system

RTRx = AT b,

where R is the triangular factor from the QR factorization
of A (this is a straightforward reformulation of the normal
equations). It is shown in [44] that, similarly to the normal
equations method, the forward error bound involves a factor
cond(A)2, even if we use a R-factor that is of better quality
than the Cholesky factor because it has been computed via
a backward stable algorithm. However, as explained in [43,
p. 126 and p. 250], the accuracy of the SNE method can
be improved by using the corrected semi-normal equations
method (CSNE) that consists in adding one step of fixed
precision iterative refinement to the SNE as follows:

1) Let x̃ solve RTRx = AT b

2) Compute r̃ = b−Ax̃
3) Solve RTRw = AT r̃

4) Corrected solution y = x̃+ w

It is shown in [45, p. 392] that, if cond(A)2u ≤ 1 (u being
the unit roundoff), then the forward error bound for the CSNE
method is similar to that of a backward stable method (and
even smaller when r = Ax − b is small). In that case, the
CSNE method is more satisfactory than the SNE method but
this is not true for all A. In the following we propose to use
the CSNE method to solve LLS in mixed precision.

2) Mixed-Precision Corrected Semi-Normal Equation: The
efficiency of mixed precision algorithms has been proved on
linear systems based on the LU factorization with results that
can reach up to 90% [40] of floating point computational rate
in the lowest precision on current architectures. The method

to solve mixed precision CSNE (or MCSNE) consists of first
performing the factorization in single precision (εs) (if the
matrix is not too ill-conditioned) with the computational cost
of θ(mn2) and then refine the solution in double precision
(εd) where operations cost θ(n2). Iterative refinement [46] is
a method that produces a correction to the computed solution
by iterating on it. Each kth iteration in this process consists
of computing the residual rk = b − Axk−1, solving the new
system Adk = rk, and adding the correction xk+1 = xk + dk.
Mixed precision iterative refinement will work as long as the
condition number of the least squares problem [47] is smaller
than the inverse of the lower precision used (i.e. here 108).

Algorithm 1 Mixed-Precision CSNE

Compute A = QR (εs)
Solve RTx = AT b (εs)
Solve Rx0 = x (εs)
do k = 1,2,...
rk = b−Axk−1 (εd)
Solve RTx = rk (εs)
Solve Rdk = x (εs)
xk = xk−1 + dk (εd)
check convergence

The first step of Algorithm 1 in NT 2 is implemented in line
8 of Figure 4, while the second and third steps are performed
by two calls to linsolve in lines 11 and 12. Note that the code
is similar in terms of syntax and number of instructions to
what would be written in MATLAB.

1 table<double> mcsne(table<double> const& A, table<double>
const& B)

2 {
3 double anrm = lange(A,’I’);
4 double cte = anrm*Eps<double>()*nt2::sqrt(width(a));
5

6 table<float> SA = cast<float>(A);
7

8 table<float,upper_triangular_> SR = triu(qr(SA));
9 table<float> SX = mtimes(trans(SA),cast<float>(B)));

10

11 SX = linsolve(trans(SR),SX);
12 SX = linsolve(SR ,SX);
13

14 table<double> X = cast<double>(SX);
15 table<double> E = B - mtimes(A,X);
16

17 std::size_t i = 0;
18

19 do
20 {
21 SX = cast<float>(mtimes(trans(A),cast<float>(E)));
22 SX = linsolve(trans(SR),SX);
23 SX = linsolve(SR ,SX);
24

25 E = cast<double>(SX)
26

27 double RNRM = maximum(abs(E(_)));
28

29 X += E;
30 double XNRM = maximum(abs(X(_)));
31

32 E = B - mtimes(A,X);
33 i++;
34 } while(!(RNRM < XNRM*cte) && (i<max_iter));
35

36 return X;
37 }

Fig. 4: NT2 implementation for MCSNE

Once the solver for MCSNE is implemented using NT 2,
it becomes possible to add it to linsolve as a dispatch case
of mixed precision solver for overdetermined linear systems.
This would result in the following call :

x = nt2::linsolve(a,b,nt2::mixed_precision_);

3) Performance results for MCSNE: Benchmarks were
carried out using 2 sockets of Intel Xeon E5645 2.40GHz
(peak Gflop/s is 230) and a Tesla C2075 (peak Gflop/s is
1030.4). We used Intel MKL [48] version 10.2.3, MAGMA
1.3 with CUDA 5.0 [49] and gcc 4.8 [50]. The random test
problems were generated using the method described in [51].
Performance results include data transfers between CPU and
GPU and data.

.. .

10
00

0/
10

00

13
00

0/
30

00

15
00

0/
50

00

18
00

0/
80

00

20
00

0/
10

00
0

0

25

50

75

100

125

150

180

220

G
fl
op

/s

QR single prec

CSNE mixed prec

QR double prec
sgemm

plasma sgels

Fig. 5: Performance results of Generated code on CPU of gels
(QR solver) and mcsne

.. .

10
00

0/
10

00

13
00

0/
30

00

15
00

0/
50

00

18
00

0/
80

00

20
00

0/
10

00
0

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

G
fl
o
p
/s

QR single prec

CSNE mixed prec

QR double prec
magma sgemm

Fig. 6: Performance results of Generated code on GPU of gels
(QR solver) and mcsne

In Figure 5 we compare the performance of MCSNE on the
CPU with the LAPACK routine xgels that solves the LLS
problem with a QR factorization without column pivoting. The
results show that performance of MCSNE is only 10% less that
the rate of sgels. Note that this represents around 75% of
the peak performance of a matrix-matrix multiply in single
precision (routine sgemm). We use random matrices and the
iterative refinement converged in less than 4 iterations.

On the GPU, the performance of MCSNE in NT 2 is de-
picted in Figure 6. It also approaches 90% of the performance
of magma sgels on GPU while being near twice faster than
the routine in double precision. The behavior of MCSNE when
compared with QR solvers in double and single precision
is similar to what was observed in [52, p. 15] for the LU
factorization.

IV. CONCLUSION

Combining the large number of algorithms available in
numerical libraries and architectural requirements in a generic
solver for dense linear systems is a complex task. We showed
that generative programming is a valid software development
approach for addressing these issues while maintaining a
high level of performance. Our contribution furthers the work
in active libraries by providing a viable way to make our
software architecture-aware. Performance results illustrate that
for both existing routines like those in linsolve and new ones
such as MCSNE, the delivered performance is close to what
state of the art libraries achieve.

The other interesting result is that software like NT 2

can quickly prototype new algorithms while providing
support for various architectures. With NT 2, we reach a
good combination of high-level codes for linear algebra
problems that gives good speedups and offers the users
enough expressiveness to describe the problem in the most
efficient way.

Future work includes support for more architectures
like Intel Xeon Phi, with work on new algorithms that
provide good performances while not being available in
numerical libraries like randomized algorithms [53], [54]
or communication-avoiding algorithms [55] for dense linear
systems. Moving to sparse problems is also a possibility
where libraries like Cups [56] or VexCL [57] provide an
interesting approach. Raising the level of expressiveness stays
a major concern while trying to add content in NT 2.

The code generator and examples described in this paper
with NT 2 are available at www.github.com/NumScale/nt2.

REFERENCES

[1] J. Dongarra, “Basic Linear Algebra Subprograms Technical Forum
Standard,” Int. J. of High Performance Computing Applications, vol. 16,
no. 1, 2002.

[2] P. Luszczek, J. Kurzak, and J. Dongarra, “Looking back at dense linear
algebra software,” Journal of Parallel and Distributed Computing, 2013.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen, LAPACK Users’ Guide, 3rd ed. Philadelphia: SIAM,
1999.

[4] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear algebra
for hybrid GPU accelerated manycore systems,” Parallel Computing,
vol. 36, no. 5&6, pp. 232–240, 2010.

[5] F. G. Van Zee, E. Chan, R. A. Van de Geijn, E. S. Quintana-Orti, and
G. Quintana-Orti, “The libflame library for dense matrix computations,”
Computing in science & engineering, vol. 11, no. 6, pp. 56–63, 2009.

[6] M. I. Cole, Algorithmic skeletons: structured management of parallel
computation. Pitman London, 1989.

[7] M. Püschel, J. M. Moura, B. Singer, J. Xiong, J. Johnson, D. Padua,
M. Veloso, and R. W. Johnson, “Spiral: A generator for platform-
adapted libraries of signal processing alogorithms,” International Jour-
nal of High Performance Computing Applications, vol. 18, no. 1, pp.
21–45, 2004.

[8] B. Marker, J. Poulson, D. Batory, and R. van de Geijn, “Designing
linear algebra algorithms by transformation: Mechanizing the expert de-
veloper,” in High Performance Computing for Computational Science-
VECPAR 2012. Springer, 2013, pp. 362–378.

[9] J. G. Siek, I. Karlin, and E. R. Jessup, “Build to order linear algebra
kernels,” in Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on. IEEE, 2008, pp. 1–8.

[10] S. Lewis, A. Csordas, S. Killcoyne, H. Hermjakob, M. R. Hoopmann,
R. L. Moritz, E. W. Deutsch, and J. Boyle, “Hydra: a scalable pro-
teomic search engine which utilizes the hadoop distributed computing
framework,” BMC bioinformatics, vol. 13, no. 1, p. 324, 2012.

[11] D. Fabregat-Traver and P. Bientinesi, “A domain-specific compiler
for linear algebra operations,” in High Performance Computing for
Computational Science-VECPAR 2012. Springer, 2013, pp. 346–361.

[12] M. Fowler, “Language workbenches: The killer-app for domain specific
languages,” http://www.issi.uned.es/doctorado/generative/Bibliografia/
Fowler.pdf, 2005.

[13] T. Veldhuizen, “Expression templates,” C++ Report, vol. 7, pp. 26–31,
1995.

[14] K. Czarnecki, K. Østerbye, and M. Völter, “Generative program-
ming,” in Object-Oriented Technology ECOOP 2002 Workshop Reader.
Springer, 2002, pp. 15–29.

[15] S. Conrad, “Armadillo: An open source C++ linear algebra library for
fast prototyping and computationally intensive experiments,” NICTA,
Australia, Tech. Rep., October 2010.

[16] P. Gottschling, D. S. Wise, and M. D. Adams, “Representation-
transparent matrix algorithms with scalable performance,” in ICS ’07:
Proceedings of the 21st annual international conference on Supercom-
puting. New York, NY, USA: ACM Press, 2007, pp. 116–125.

[17] MATLAB, version 8.10.0 (R2010a). Natick, Massachusetts: The
MathWorks Inc., 2013.

[18] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org,
2010.

[19] M. Lehn, “FLENS,” http://http://www.mathematik.uni-ulm.de/∼lehn/
FLENS/, 2013.

[20] J. Walter and M. Koch, “The boost uBLAS library,” http://www.boost.
org/libs/numeric/ublas, 2002.

[21] K. Iglberger, G. Hager, J. Treibig, and U. Rüde, “Expression templates
revisited: a performance analysis of current methodologies,” SIAM
Journal on Scientific Computing, vol. 34, no. 2, pp. C42–C69, 2012.

[22] P. Esterie, J. Falcou, M. Gaunard, J. T. Lapresté, and L. Lacassagne,
“The numerical template toolbox: A modern C++ design for scientific
computing,” Journal of Parallel and Distributed Computing, 2014.

[23] J. Falcou, J. Sérot, L. Pech, and J. T. Lapresté, “Meta-programming
applied to automatic SMP parallelization of linear algebra code,” in
Euro-Par 2008–Parallel Processing. Springer, 2008, pp. 729–738.

[24] U. Tennessee, “PLASMA users’ guide, parallel linear algebra software
for multicore architectures, version 2.3,” http://icl.cs.utk.edu/plasma/
software/, 2010.

[25] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I. August,
“Compiler optimization-space exploration,” in Code Generation and
Optimization, 2003. CGO 2003. International Symposium on. IEEE,
2003, pp. 204–215.

[26] R. C. Whaley and J. Dongarra, “Automatically tuned linear algebra
software,” in Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing. IEEE Computer Society, 1998, pp. 1–27.

www.github.com/NumScale/nt2
http://www.issi.uned.es/doctorado/generative/Bibliografia/Fowler.pdf
http://www.issi.uned.es/doctorado/generative/Bibliografia/Fowler.pdf
http://eigen.tuxfamily.org
http://http://www.mathematik.uni-ulm.de/~lehn/FLENS/
http://http://www.mathematik.uni-ulm.de/~lehn/FLENS/
http://www.boost.org/libs/numeric/ublas
http://www.boost.org/libs/numeric/ublas
http://icl.cs.utk.edu/plasma/software/
http://icl.cs.utk.edu/plasma/software/

[27] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier, “StarPU: a
unified platform for task scheduling on heterogeneous multicore ar-
chitectures,” Concurrency and Computation: Practice and Experience,
vol. 23, no. 2, pp. 187–198, 2011.

[28] T. L. Veldhuizen and E. Gannon, “Active libraries: Rethinking the roles
of compilers and libraries,” in Proceedings of the SIAM Workshop on
Object Oriented Methods for Inter-operable Scientific and Engineering
Computing (OO98). SIAM Press, 1998.

[29] K. Czarnecki and U. W. Eisenecker, “Components and generative
programming,” in Software EngineeringESEC/FSE99. Springer, 1999,
pp. 2–19.

[30] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lums-
daine, “Concepts: linguistic support for generic programming in C++,”
in ACM SIGPLAN Notices, vol. 41. ACM, 2006, pp. 291–310.

[31] D. Abrahams and A. Gurtovoy, C++ template metaprogramming:
concepts, tools, and techniques from Boost and beyond. Addison-
Wesley Professional, 2004.

[32] W. Bright, “D language Templates revisited,” http://dlang.org/
templates-revisited.html.

[33] T. Sheard and S. P. Jones, “Template Meta-programming for Haskell,”
SIGPLAN Not., vol. 37, no. 12, pp. 60–75, Dec. 2002. [Online].
Available: http://doi.acm.org/10.1145/636517.636528

[34] W. Taha, “A gentle introduction to multi-stage programming,” in
Domain-Specific Program Generation. Springer, 2004, pp. 30–50.

[35] K. Czarnecki, U. Eisenecker, R. Glück, D. Vandevoorde, and T. Veld-
huizen, “Generative programming and active libraries,” in Generic
Programming. Springer, 2000, pp. 25–39.

[36] K. Czarnecki and U. W. Eisenecker, Generative Programming: Meth-
ods, Tools, and Applications. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 2000.

[37] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
Computer, vol. 39, no. 2, pp. 0025–31, 2006.

[38] D. R. Musser, G. J. Derge, and A. Saini, STL tutorial and reference
guide: C++ programming with the standard template library. Addison-
Wesley Professional, 2009.

[39] P. Estérie, “Multi-architectural support: A generic and generative ap-
proach,” Ph.D. dissertation, Paris 11, 2014.

[40] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek,
and S. Tomov, “Accelerating scientific computations with mixed preci-
sion algorithms,” Computer Physics Communications, vol. 180, no. 12,
pp. 2526–2533, 2009.

[41] N. Bell and J. Hoberock, “Thrust: A productivity-oriented library for
CUDA,” GPU Computing Gems, vol. 7, 2011.

[42] J. Enmyren and C. W. Kessler, “SkePU: a multi-backend skeleton
programming library for multi-GPU systems,” in Proceedings of the
fourth international workshop on High-level parallel programming and
applications. ACM, 2010, pp. 5–14.

[43] A. Björck, Numerical methods for least squares problems. Siam, 1996.
[44] ——, “Stability analysis of the method of semi-normal equations for

least squares problems,” Linear Algebra and its Applications, vol. 88/89,
pp. 31–48, 1987.

[45] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
Philadelphia: SIAM, 2002.

[46] J. Demmel, Y. Hida, W. Kahan, X. S. Li, S. Mukherjee, and E. J.
Riedy, “Error bounds from extra-precise iterative refinement,” ACM
Trans. Math. Softw., vol. 32, no. 2, pp. 325–351, 2006.

[47] M. Baboulin, J. Dongarra, S. Gratton, and J. Langou, “Computing
the conditioning of the components of a linear least-squares solution,”
Numerical Linear Algebra with Applications, vol. 16, no. 7, pp. 517–
533, 2009.

[48] Intel, “Math Kernel Library (MKL),” http://www.intel.com/software/
products/mkl/.

[49] NVIDIA CUDA C Programming Guide, NVIDIA, 04/16/2012, version
4.2.

[50] B. J. Gough and R. M. Stallman, An Introduction to GCC. Network
Theory Ltd., 2004.

[51] C. C. Paige and M. A. Saunders, “LSQR: An algorithm for sparse linear
equations and sparse least squares,” vol. 8, no. 1, pp. 43–71, 1982.

[52] M. Baboulin, “Fast and reliable solutions for numerical linear algebra
solvers in high-performance computing,” http://tel.archives-ouvertes.fr/
tel-00967523, 2012, habilitation thesis - University of Paris-Sud.

[53] M. Baboulin, D. Becker, and J. Dongarra, “A Parallel Tiled Solver for
Dense Symmetric Indefinite Systems on Multicore Architectures,” in
Proceedings of IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2012), 2012, pp. 14–24.

[54] M. Baboulin, J. Dongarra, J. Herrmann, and S. Tomov, “Accelerating
linear system solutions using randomization techniques,” ACM Trans.
Math. Softw., vol. 39, no. 2, 2013.

[55] M. Baboulin, S. Donfack, J. Dongarra, L. Grigori, A. Rémy, and
S. Tomov, “A class of communication-avoiding algorithms for solving
general dense linear systems on CPU/GPU parallel machines,” in
International Conference on Computational Science (ICCS 2012), ser.
Procedia Computer Science, vol. 9. Elsevier, 2012, pp. 17–26.

[56] N. Bell and M. Garland, “Cusp: Generic parallel algorithms for sparse
matrix and graph computations,” http://cusp-library.googlecode.com,
2012, version 0.3.0.

[57] D. Demidov, “VexCL: Vector expression template library for OpenCL,”
http://github.com/ddemidov/vexcl, 2012.

http://dlang.org/templates-revisited.html
http://dlang.org/templates-revisited.html
http://doi.acm.org/10.1145/636517.636528
http://www.intel.com/software/products/mkl/
http://www.intel.com/software/products/mkl/
http://tel.archives-ouvertes.fr/tel-00967523
http://tel.archives-ouvertes.fr/tel-00967523
http://cusp-library.googlecode.com
http://github.com/ddemidov/vexcl

	I Introduction
	II Generative programming for designing numerical libraries
	II-A Optimization approaches based on a configuration space
	II-B Generative programming in software development
	II-C Domain engineering methods for active libraries

	III Application to linear algebra solvers
	III-A Linear system solvers
	III-B Memory management for hybrid computation
	III-C Application to linear least squares
	III-C1 Solving least squares by semi-normal equations
	III-C2 Mixed-Precision Corrected Semi-Normal Equation
	III-C3 Performance results for MCSNE

	IV Conclusion
	References

