
A Parallel Tiled Solver for Dense Symmetric Indefinite Systems on Multicore
Architectures

Marc Baboulin∗ †, Dulceneia Becker‡ and Jack Dongarra‡§¶
∗Inria Saclay - Île-de-France, F-91893 Orsay, France

†Université Paris-Sud, F-91405 Orsay, France
‡University of Tennessee, Knoxville, TN 37996-3450, USA
§Oak Ridge National Laboratory, Oak Ridge, TN, USA
¶University of Manchester, Manchester, United Kingdom

marc.baboulin@inria.fr, dbecker7@eecs.utk.edu, dongarra@eecs.utk.edu

Abstract—We describe an efficient and innovative parallel
tiled algorithm for solving symmetric indefinite systems on
multicore architectures. This solver avoids pivoting by using
a multiplicative preconditioning based on symmetric ran-
domization. This randomization prevents the communication
overhead due to pivoting, is computationally inexpensive and
requires very little storage. Following randomization, a tiled
factorization is used that reduces synchronization by using
static or dynamic scheduling. We compare Gflop/s performance
of our solver with other types of factorizations on a current
multicore machine and we provide tests on accuracy using
LAPACK test cases.

Keywords-dense linear algebra; symmetric indefinite systems,
randomized algorithms, tiled factorization.

I. INTRODUCTION

Symmetric indefinite linear systems are commonly en-

countered in physical applications, e.g. Navier-Stokes dis-

cretized equations coming from incompressible fluid simu-

lations, and optimization problems coming from physics of

structures, acoustics, and electromagnetism. In the particular

case of dense systems, an important example of application

of such systems is the linear least-squares problem when it

is solved via the augmented system method [1, p. 77]. In

this case, we solve the linear least-squares problem

min
x∈Rn

‖Cx− d‖2

where d ∈ R
m and C ∈ R

m×n by considering the equivalent

linear system(
I C
CT 0

)(
r
x

)
=

(
d
0

)
⇔ Ax = b

where r = Cx − d is the residual, I is the identity matrix

and the symmetric matrix A ∈ R
m+n is indefinite.

Dense symmetric indefinite systems (in complex arith-

metic) also arise in electromagnestism when the Maxwell

equations are discretized using the Boundary Element

Method (BEM). For all these applications the usual problem

size may be a few hundreds of thousands variables. This

requires the use of parallel algorithms that minimize the

number of floating-point operations per second, optimize

the data storage, and achieve concurrency and scalability

on current multicore architectures.

A symmetric matrix A is called indefinite when the

quadratic form xTAx can take on both positive and negative

values. By extension, a linear system Ax = b is called

symmetric indefinite when A is symmetric indefinite. Even

though symmetric indefinite matrices can be factorized using

methods for general matrices such as LU or QR, methods

that exploit the symmetry of the system are generally favored

since the flop count becomes half that for a general matrix

(n3/3 vs 2n3/3 operations where n is the matrix size).

A classical way to solve these systems is based on

so-called diagonal pivoting methods [2] where a block-

LDLT factorization is obtained such as

PAPT = LDLT (1)

where P is a permutation matrix, A is a symmetric square

matrix, L is unit lower triangular and D is block-diagonal,

with blocks of size 1× 1 or 2× 2; all matrices are of size

n × n. If no pivoting is applied, i.e. P = I , D becomes

diagonal. The solution x can be computed by successively

solving the triangular or block-diagonal systems Lz = Pb,
Dw = z, LT y = w, and ultimately we have x = PT y. This

pivoting method turns out to be very stable in practice and is

implemented in current serial dense linear algebra libraries

(e.g. LAPACK [3]). This pivoting method requires between

O(n2) and O(n3) comparisons.

While many implementations of the LDLT factorization

have been proposed for sparse solvers on distributed and

shared memory architectures [4], [5], [6], [7], there is no

parallel implementation in the current dense linear algebra

libraries SCALAPACK [8], PLASMA [9], MAGMA [10],

and FLAME [11]. These libraries have implemented solu-

tions for the common Cholesky, LU and QR factorizations

but none of them introduced a solution for indefinite sym-

metric matrices in spite of the gain of flops it could provide

for these cases. The main reason for this comes from the

algorithms used for pivoting in LDLT , which are difficult

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.12

14

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.12

14

to parallelize efficiently. To our knowledge, the only research

in the subject has been done by Strazdins [12] and the

procedure is available in the OpenMP version of MKL [13].

One of the differences between symmetric and nonsym-

metric pivoting is that, independently from the pivoting

technique used, columns and rows must be interchanged in

the symmetric case while only columns must be swapped

in the nonsymmetric case. This in itself makes pivoting

more expensive in terms of data movement for symmetric

matrices. Interchanging rows and columns also compromises

data locality since noncontiguous data blocks must be moved

however data are stored. There is also an increase of data de-

pendencies, which inhibits parallelism, both in interchanging

columns/rows and in searching for pivots. For nonsymmetric

matrices, pivots are most commonly searched in a single

column (partial pivoting) while for symmetric matrices the

search may be extended to the diagonal and further.

With the advent of architectures such as multicore proces-

sors [14] and Graphics Processing Units (GPU), the growing

gap between communication and computation efficiency

made the communication overhead due to pivoting even

more critical since it might represent more than 40% of

the global factorization time, depending on the matrix size

(see e.g. [15] for the case of general linear systems). This

is why we propose in this paper a solver that eliminates

the communication overhead due to pivoting by considering

a randomization technique initially proposed in [16] and

developed in [15] for the LU factorization, with preliminary

results in [17] for symmetric indefinite systems. According

to this transformation, the original matrix A is transformed

into a matrix that would be sufficiently “random” so that,

with a probability close to one, pivoting is not needed.

This transformation is a multiplicative preconditioning by

means of random matrices called recursive butterfly matrices
resulting, when A is symmetric, in a so-called Symmetric

Random Butterfly Transformation (SRBT). The LDLT fac-

torization without pivoting is then applied to the precondi-

tioned matrix. It has been observed in [17] on a collection

of matrices that the computational overhead resulting from

the randomization is reduced to ∼ 8n2 operations (which is

negligible when compared to the communication overhead

due to pivoting) while providing an accuracy close to that

of LDLT with Bunch-Kaufman pivoting strategy as it is

implemented in LAPACK and Matlab.

In this paper we propose an implementation of SRBT

that uses a packed storage for the butterfly matrices and

takes advantage of their particular structure to efficiently

compute the random transformations. We also present a tiled

LDLT factorization with no pivoting, which can reasonably

strive for a “Cholesky speed” LDLT solver on multicore

architectures.

Tiled algorithms are based on decomposing the compu-

tation into small tasks in order to overcome the sequential

nature of the algorithms implemented in LAPACK. These

tasks can be executed out of order, as long as dependen-

cies are observed, rendering parallelism. Furthermore, tiled

algorithms make use of a tile data-layout where data are

stored in contiguous blocks, which differs from the column-

wise layout used by LAPACK, for instance. The tile data-

layout allows the computation to be performed on small

blocks of data that fit into cache, and hence exploits cache

locality and re-use. The so-called tiled LDLT factorization

described in this paper is based on these principles. Note

that such a factorization, i.e. without pivoting, could be

used even without preliminar randomization to factorize

efficiently symmetric matrices for which the growth factor

is O(1) and therefore pivoting is not needed (see examples

of such classes of matrices in [18, p. 166]).

For more stability, we systematically add a few iterative

refinement steps in working precision where the stopping

criterion is the componentwise relative backward error. For

the matrices used in the experiments, no more than one

iteration is ever needed. An important observation is also

that the 2-norm condition number of the initial matrix A is

kept almost unchanged after SRBT.

We can summarize the method used by our solver as:

1) multiplicative preconditioning of the original matrix

using SRBT with in general a maximum of two

recursions (O(n2) flops),

2) efficient tiled LDLT factorization without pivoting

(n3/3 flops),

3) iterative refinement in working precision (one or two

iterations in practice) requiring O(n2) flops.

This paper is organized as follows. In Section II, we

describe the SRBT algorithm used prior to the LDLT in

order to avoid pivoting. In Section III, the LDLT algorithm is

introduced and the tiled LDLT algorithm is detailed, as well

as both dynamic and static scheduling. Performance results

regarding a time comparison among LDLT , Cholesky and

LU factorization, the LDLT scalability, tile size performance

and numerical accuracy are presented in Section IV. Con-

clusions are presented in Section V.

II. TRANSFORMING SYMMETRIC INDEFINITE SYSTEMS

TO AVOID PIVOTING

A. Definition

For solving the symmetric indefinite system Ax = b,
we first apply a random transformation to the matrix A
so that pivoting is not needed in the LDLT factorization.

This technique was initially proposed by Parker [16] in the

context of general linear systems where the randomization

is referred to as Random Butterfly Transformation (RBT).

Then a modified approach has been described in [15] for the

LU factorization that reduces the computational cost of the

transformation.

1515

We have adapted this technique to symmetric systems1.

The procedure to solve Ax = b, where A is symmetric,

using a random transformation and the LDLT factorization

is:

1) Compute Ar = UTAU , with U a random matrix,

2) Factorize Ar = LDLT (without pivoting),

3) Solve Ary = UT b and compute x = Uy.

The matrix U is chosen among a particular class of ran-

dom matrices called recursive butterfly matrices and the

resulting transformation will be referred to as Symmetric
Random Butterfly Transformation (SRBT). Obviously

such a transformation is interesting only if the multiplicative

preconditioning UTAU is “cheap” enough.

Let us first recall the definitions of two types of matrices

used in SRBT. These definitions are based on [16] in the

particular case of real-valued matrices.

A butterfly matrix is defined as any n-by-n matrix of the

form:

B =
1√
2

(
R S
R −S

)
(2)

where n ≥ 2 and R and S are random diagonal and

nonsingular n/2-by-n/2 matrices.

We define a recursive butterfly matrix U of size n and

depth d as a product of the form

U = Ud × · · · × U1, (3)

where Uk (1 ≤ k ≤ d) is a block diagonal matrix expressed

as

Uk =

⎛
⎜⎝

B1

. . .

B2k−1

⎞
⎟⎠ (4)

each Bi being a butterfly matrix of size n/2k−1. In particular

U1 is a butterfly as defined in Formula (2).

Note that this definition requires that n is a multiple of 2d

which can be obtained by “augmenting” the matrix A with

additional 1’s on the diagonal. Note also that the definition of

U differs from the definition of a recursive butterfly matrix

given in [16] in which the first term of U is a diagonal

matrix of size n (and thus the product contains log2 n + 1
terms).

B. Storage of recursive butterfly matrices

A butterfly matrix as well as a recursive butterfly matrix

can be stored compactly using a vector and a matrix,

respectively. From Formula (2) and given m = n/2, a

butterfly matrix B of size n×n can be stored compactly in

a vector w of size n, such as the top m elements and the

1Note that when A is positive definite, randomization is not relevant
since the factorization can be computed in a stable and efficient manner
using a Cholesky algorithm resulting in a factorization A = LLT with L
lower triangular.

bottom m elements are, respectively, the coefficients of R
and S:

w = [r11r22 . . . rmm s11s22 . . . smm]T

Let us now consider a recursive butterfly U of depth d,

as expressed in Formulas (3) and (4). We observe that each

term Uk can be stored in a vector of size n. Thus U can be

stored compactly in a matrix W of size n×d where the kth

column represents the matrix Uk expressed in Formula (4),

which means that each matrix Bi is stored as

Bi →W
(
(i− 1) · n

2k−1
+ 1 : i · n

2k−1
, k
)

As a result, the recursive butterfly U can be obtained at once

by choosing randomly the corresponding n-by-d matrix W .

Note that due to the symmetry of the transformation

Ar = UTAU , this represents half the storage required for

the butterflies used in LU factorization.

C. Computation of the randomized matrix

In the following, we describe how SRBT can be efficiently

computed by taking advantage of the symmetry and also

estimate the number of floating-point operations required.

The computational cost of SRBT depends on the order of

the matrix to be transformed n and on number of recursion

levels d.

Given that

Ar = UTAU =

d∏
i=1

UT
i A

1∏
i=d

Ui

for each recursion level k, UT
k QUk must be computed as a

block matrix of the form⎛
⎜⎝

BT
1 Q11B1 · · · BT

1 Q
T
p1Bp

...
. . .

...

BT
p Qp1B1 · · · BT

p QppBp

⎞
⎟⎠ (5)

where p = 2k−1 and Q is a partial random transformation

of A (levels d to k + 1) given by

Q =

d∏
i=k+1

UT
i A

k+1∏
i=d

Ui

Equation (5) requires two computational kernels:

1) symmetric BTCB with C symmetric, and

2) general BTCB′.
For the general (nonsymmetric) kernel:

BTCB′ =
1

2

(
R R
S −S

)(
C11 C12

C21 C22

)(
R′ S′

R′ −S′
)

=
1

2

(
R 0
0 S

)
D

(
R′ 0
0 S′

)

=
1

2
diag(w) D diag(w′),

1616

where D =(
(C11 + C22) + (C21 + C12) (C11 − C22)− (C12 − C21)
(C11 − C22)− (C21 − C12) (C11 + C22)− (C21 + C12)

)

and w and w′ are the vectors storing compactly B and B′,
respectively, as described in Section II-B. The computation

of BTCB′ requires 4n2 flops.

For the symmetric kernel, w′ = w and therefore

BTCB =
1

2
diag(w) D diag(w),

D is symmetric and hence so are C11+C22, C21+C12, and

C11 − C22. The computation of D and each multiplication

by w require approximately n2 + O(n) flops (considering

the symmetry). Finally the computation of BTCB requires

2n2 +O(n) flops.

Each matrix expressed in (5) requires p symmetric kernels

and p(p−1)/2 general (nonsymmetric) kernels operating on

matrices of size n/p. Therefore, the number of operations

involved in randomizing A by an SRBT of depth d is

C(n, d)

d∑

k=1

(
p · 2(n/p)2 + p(p− 1)/2 · 4(n/p)2)

= 2dn2

As expected, SRBT requires half the flop count required

for the randomization applied to the nonsymmetric case

(see [15]). This cost is minimized by considering a number

of recursions d such that d < log2 n � n. Numerical tests

described in [17] and performed on a collection of matrices

from the Higham’s Matrix Computation Toolbox [18] have

shown that, in practice, d = 2 enables us to achieve

satisfying accuracy.

Similarly to the product of a recursive butterfly by a

matrix, the product of a recursive butterfly by a vector

does not require the explicit formation of the recursive

butterfly since the computational kernel will be a product

of a butterfly by a vector, which involves O(n) operations.

As a result, the computation of UT b and Uy (step 3 of the

solution process given at the beginning of Section II-A) can

be performed in O(dn) flops and will be neglected in the

remainder of this paper, for small values of d.

D. Generation of the butterflies and conditioning issues

We generate the random diagonal values used in the

butterflies as eρ/10, where ρ is randomly chosen in [− 1
2 ,

1
2].

This choice is suggested and justified in [16] by the fact that

the determinant of a butterfly has an expected value 1. Then

the random values ri used in generating butterflies are such

that

e−1/20 ≤ ri ≤ e1/20.

Let us now evaluate how the multiplicative precondition-

ing involved in SRBT might affect the 2-norm condition

number of the original matrix defined by cond2(A) =
‖A‖2

∥∥A−1
∥∥
2
.

For an elementary butterfly B of size n, we have

BTB =

(
R2 0
0 S2

)

= diag(r1, . . . , rn)
2.

Then we have

cond2(B) =
√
cond2(BTB) =

max ri
min ri

,

and thus

cond2(B) ≤ e1/10. (6)

Let B = diag(B1, . . . , Bp) be one of the random block

diagonal matrices as expressed in Formula (4) with 1 ≤
p ≤ 2d−1 and the Bi’s butterflies of size n/p. Then, we have

BTB = diag(B1
TB1, . . . , Bp

TBp) and, using Equation (6),

we also have cond2(B) ≤ exp
(

1
10

)
, and for a a recursive

butterfly U of depth d, we get cond2(U) ≤ ed/10. Then,

since the condition number of the randomized matrix Ar

verifies

cond2(Ar) ≤ cond2(U) cond2(A) cond2(U) ,

we get

cond2(Ar) ≤ ed/5cond2(A) = 1.2214dcond2(A) . (7)

Since d is in general close to 2, Formula (7) shows

that the condition number of the original matrix is kept

almost unchanged by SRBT. However, we recall that the

LDLT algorithm without pivoting is potentially unstable

[18, p. 214], due to a possibly large growth factor. We can

find in [16] explanations about how RBT might modify the

growth factor of the original matrix A. To ameliorate this

potential instability, we systematically add in our method a

few steps of iterative refinement in the working precision as

indicated in [18, p. 232].

III. TILED LDLT FACTORIZATION

The LDLT factorization is given by equation

A = LDLT (8)

where A is an N × N symmetric square matrix, L is unit

lower triangular and D is diagonal. For simplicity and also

because pivoting is not used, the assumption that D is

diagonal has been made, although D can also be block-

diagonal, with blocks of size 1×1 or 2×2, when pivoting is

applied. The matrix A can also be factorized as A = UDUT,

where U is unit upper triangular. The algorithm for the lower

triangular case (L) can straightforwardly be extended to the

upper triangular case (U) and therefore only the development

of the former is presented.
Algorithm 1 shows the steps needed to decompose A

using a column-wise LDLT factorization. After N steps of

Algorithm 1, L and D are such that

A =

⎡
⎣ 1

l21 1
l31 l32 1

⎤
⎦
⎡
⎣ d1

d2
d3

⎤
⎦
⎡
⎣ 1 l21 l31

1 l32
1

⎤
⎦

1717

As it is depicted in Figure 1, this process is intrinsically

sequential.

Algorithm 1 LDLT Factorization

1: for j = 1 to N do
2: for i = 1 to j − 1 do
3: vi = Aj,iAi,i

4: end for
5: vj = Aj,j −Aj,1:j−1v1:j−1

6: Aj,j = vj
7: Aj+1:N,j = (Aj+1:N,j −Aj+1:N,1:j−1v1:j−1) /vj
8: end for

A(4) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

◦
◦
◦

◦ ◦ ◦ ×
◦ ◦ ◦ ×
◦ ◦ ◦ ×
◦ ◦ ◦ ×
◦ ◦ ◦ ×
◦ ◦ ◦ ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 1. Sketch of elements to be calculated (×) and accessed (◦) at the
fourth step (k = 4) of Algorithm 1.

In order to increase parallelism, the tiled algorithm starts

by decomposing A in NT ×NT tiles (blocks), such as

A =

⎡
⎢⎢⎢⎣

A11 A12 . . . A1,NT

A21 A22 . . . A2,NT

...
...

. . .
...

ANT,1 ANT,2 . . . ANT,NT

⎤
⎥⎥⎥⎦
N×N

(9)

Each Aij is a tile of size MB×NB. The same decomposi-

tion can be applied to L and D. For instance, for NT = 3:

L =

⎡
⎣ L11

L21 L22

L31 L32 L33

⎤
⎦ , D =

⎡
⎣ D11

D22

D33

⎤
⎦

Upon this decomposition and using the same principle

of the Schur complement, the following equalities can be

obtained:

A11 = L11D11L
T
11 (10)

A21 = L21D11L
T
11 (11)

A31 = L31D11L
T
11 (12)

A22 = L21D11L
T
21 + L22D22L

T
22 (13)

A32 = L31D11L
T
21 + L32D22L

T
22 (14)

A33 = L31D11L
T
31 + L32D22L

T
32 − L33D33L

T
33 (15)

Figure 2. Column-major and tile layout sketch.

By further rearranging the equalities, a series of tasks can

be set to calculate each Lij and Dii:

[L11, D11] = LDL(A11) (16)

L21 = A21(D11L
T
11)
−1 (17)

L31 = A31(D11L
T
11)
−1 (18)

Ã22 = A22 − L21D11L
T
21 (19)

[L22, D22] = LDL(Ã22) (20)

Ã32 = A32 − L31D11L
T
21 (21)

L32 = Ã32(D22L
T
22)
−1 (22)

Ã33 = A33 − L31D11L
T
31 + L32D22L

T
32 (23)

[L33, D33] = LDL(Ã33) (24)

where LDL(Xkk) at Equations (16), (20) and (24) means the

actual LDLT factorization of tile Xkk. These tasks can be

executed out of order, as long as dependencies are observed,

rendering parallelism.

The decomposition into tiles allows the computation to be

performed on small blocks of data that fit into cache. This

leads to the need of a reorganization of data formerly given

in a column major layout, as depicted in Figure 2. The tile

layout reorders data in such a way that all data of a single

block is contiguous in memory. Thus the decomposition of

the computation can either be statically scheduled to take

advantage of cache locality and reuse or be dynamically

scheduled based on dependencies among data and compu-

tational resources available.

A. Tiled LDLT Algorithm

The tiled algorithm for the LDLT factorization is based

on the following operations:

xSYTRF: This LAPACK based subroutine is used to

perform the LDLT factorization of a symmetric tile

Akk of size NB × NB producing a unit triangular

tile Lkk and a diagonal tile Dkk.

Using the notation input −→ output, the call

xSYTRF(Akk, Lkk, Dkk) will perform

Akk −→ Lkk, Dkk = LDLT (Akk)

xSYTRF2: This subroutine first calls xSYTRF to perform

the factorization of Akk and then multiplies Lkk by

1818

Dkk. The call xSYTRF2(Akk, Lkk, Dkk, Wkk) will

perform

Akk −→ Lkk, Dkk = LDLT (Akk),

Wkk = LkkDkk

xTRSM: This BLAS subroutine is used to apply the

transformation computed by xSYTRF2 to an Aik

tile by means of a triangular system solve. The call

xTRSM(Wkk, Aik) performs

Wkk, Aik −→ Lik = AikW
−T
kk

xSYDRK: This subroutine is used to update the tiles Akk

in the trailing submatrix by means of a matrix-matrix

multiply. It differs from xGEMDM by taking advantage

of the symmetry of Akk and by using only the lower

triangular part of A and L. The call xSYDRK(Akk,

Lki, Dii) performs

Akk, Lki, Dii −→ Akk = Aik − LkiDiiL
T
ki

xGEMDM: This subroutine is used to update the tiles Aij

for i
= j in the trailing submatrix by means of a

matrix-matrix multiply. The call xGEMDM(Aij , Lik,

Ljk, Dkk) performs

Aij , Lik, Ljk, Dkk −→ Aij = Aij − LikDkkL
T
jk

Given a symmetric matrix A of size N × N , NT as

the number of tiles, such as in Equation (9), and making

the assumption that N = NT × NB (for simplicity),

where NB × NB is the size of each tile Aij , then the

tiled LDLT algorithm can be described as in Algorithm 2.

A graphical representation of Algorithm 2 is depicted in

Figure 3.

Algorithm 2 Tile LDLT Factorization

1: for k = 1 to NT do
2: xSYTRF2(Akk, Lkk, Dkk, Wkk)

3: for i = k + 1 to NT do
4: xTRSM(Wkk, Aik)

5: end for
6: for i = k + 1 to NT do
7: xSYDRK(Akk, Lki, Dii)

8: for j = k + 1 to i− 1 do
9: xGEMDM(Aij , Lik, Ljk, Dkk)

10: end for
11: end for
12: end for

B. Static and Dynamic Scheduling

Following the approach presented in [19], [20], [21],

Algorithm 2 can be represented as a Directed Acyclic Graph

(DAG) where nodes are elementary tasks that operate on

one or several NB×NB blocks and where edges represent

xTRSM
k=1, i=2

xSYTRF/xSYTRF2
k=1, j=1

xTRSM
k=1, i=3

xSYDRK
k=1, i=2

xSYDRK
k=1, i=3

xGEMDM
k=1, i=3, j=2

Figure 3. Graphical representation with dependencies of one repetition of
the outer loop in Algorithm 2 with NT = 3.

the dependencies among them. A dependency occurs when

a task must access data outputted by another task either

to update or to read them. Figure 4 shows a DAG for

the tiled LDLT factorization when Algorithm 2 is executed

with NT = 4. Once the DAG is known, the tasks can be

scheduled asynchronously and independently as long as the

dependencies are not violated.

This dynamic scheduling results in an out-of-order ex-

ecution where idle time is almost completely eliminated

since only very loose synchronization is required between

the threads. Figure 5(a) shows the execution trace of Al-

gorithm 2 where tasks are dynamically scheduled, based

on dependencies in the DAG, and run on 8 cores of the

MagnyCours-48 machine (described in Section IV). The

tasks were scheduled using QUARK [22], which is the

scheduler available in the PLASMA library. Each row in

the execution flow shows which tasks are performed and

each task is executed by one of the threads involved in

the factorization. The trace follows the same color code as

Figure 3.

Figure 5(b) shows the trace of Algorithm 2 using static

scheduling, which means that each core’s workload is pre-

determined. The synchronization of the computation for

correctness is enforced by a global progress table. The static

scheduling technique has two important shortcomings. First

is the difficulty of development. It requires full understand-

ing of the data dependencies in the algorithm, which is

hard to acquire even by an experienced developer. Second

is the inability to schedule dynamic algorithms, where the

1919

complete task graph is not known beforehand. This is

the common situation for eigenvalue algorithms, which are

iterative by nature [23]. Finally, it is almost impossible with

the static scheduling to overlap simply and efficiently several

functionalities like the factorization and the solve that are

often called simultaneously. However for a single step, as

can be seen in Figure 5, the static scheduling on a small

number of cores may outrun the dynamic scheduling due to

better data locality and cache reuse.

For the LDLT factorization, it is possible to build an

efficient progress table or execution path. Comparing Fig-

ures 5(a) and 5(b) one can notice that the tasks are scheduled

in different ways but the execution time is similar (see

Section IV for more details). It is important to highlight

that developing an efficient static scheduling can be very

difficult and that the dynamic scheduler notably reduces the

complexity of programing tiled algorithms.

1:1 xSYTRF 1

xTRSM 2xTRSM 3 xTRSM 4

xSYDRK 5xSYDRK 6 xGEMDM 7 xSYDRK 8xGEMDM 9xGEMDM 10

xSYTRF 11

2:3

xSYDRK 14

xTRSM 12

xSYDRK 15

xTRSM 13

xTRMDM 21

xGEMDM 16

xSYTRF 17

3:6

4:2

xSYDRK 19

xTRMDM 22

xTRSM 18

5:2

xSYTRF 20

6:3

7:2

xTRMDM 23

8:1

9:1

10:2

Figure 4. DSYTRF DAG; NT = 4.

IV. NUMERICAL EXPERIMENTS

We present numerical experiments for our parallel

LDLT solver where the randomization by SRBT is computed

as described in Section II-C with a maximum of 2 recursions

and the butterflies are generated as explained in Section II-D.

The LDLT algorithm presented in Section III-A has been

implemented by following the software development guide-

lines of PLASMA, the Parallel Linear Algebra Software for

Multicore Architectures library [9]. In the remainder of this

section, our solver for symmetric indefinite systems will be

designated as SRBT-LDLT .

The numerical results that follow are presented for both

a static and a dynamic scheduler (see Section III-B) and

have been carried out using the MagnyCours-48 system. This

machine has a NUMA architecture and is composed of four

AMD Opteron 6172 Magny-Cours CPUs running at 2.1GHz

with twelve cores each (48 cores total) and 128GB of mem-

ory. The theoretical peak of this machine is 403.2 Gflop/s

(a) Dynamic scheduling

(b) Static scheduling

Figure 5. Traces of tiled LDLT (MagnyCours-48 with 8 threads).

(8.4 Gflop/s per core) in double precision. Comparisons are

made against version 10.3.2 of the Intel MKL [13] library

for multicore, and against the reference LAPACK 3.2 from

Netlib, linked with the same MKL BLAS multi-threaded

library. SRBT-LDLT is linked with the sequential version

of MKL for the required BLAS and LAPACK routines.

This version of MKL achieves 7.5 Gflop/s on a DGEMM
(matrix-matrix multiplication) on one core. Unless otherwise

stated, the measurements were carried out using all the 48

cores of the MagnyCours-48 system and run with numactl
-interleaved=0-#. Also, a tile size of NB = 250 and

an inner-blocking size of IB = 125.

A. Tests on accuracy

Preliminary tests were carried out in [17] to verify the

accuracy of SBRT followed by LDLT with no pivoting

using a Matlab implementation and test matrices out of the

Higham’s Matrix Computation Toolbox [18]. We provide

here additionnal tests with our multicore implementation

using LAPACK test cases given in [24].

Table I describes the 10 matrices used in our experiments

(size 512, all in double precision). In this table, ε denotes

the machine precision and κ is the infinity-norm condition

number of the matrix.

Table II shows the componentwise backward error defined

in [25] and expressed by

ω = max
i

|Ax− b|i
(|A| · |x|+ |b|)i ,

2020

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14 16 18 20

G
F

lo
p/

s

Matrix order [103]

Single Real (Magnycours-48)

Tile Static
Tile Dynamic
MKL
Lapack + MKL BLAS

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20

G
F

lo
p/

s

Matrix order [103]

Double Real (Magnycours-48)

Tile Static
Tile Dynamic
MKL
Lapack + MKL BLAS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14 16 18 20

G
F

lo
p/

s

Matrix order [103]

Single Complex (Magnycours-48)

Tile Static
Tile Dynamic
MKL
Lapack + MKL BLAS

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16 18 20

G
F

lo
p/

s

Matrix order [103]

Double Complex (Magnycours-48)

Tile Static
Tile Dynamic
MKL
Lapack + MKL BLAS

Figure 6. Performance of SRBT-LDLT against MKL and LAPACK.

where x is the computed solution.

Three solvers are compared:

1) SRBT-LDLT ,

2) LDLT with partial pivoting (LAPACK),

3) SRBT followed by LDLT with partial pivoting.

As mentionned in Section II-D, we add systematically

iterative refinement (in the working precision) for better

stability. Similarly to [26], [27], the iterative refinement

algorithm is activated while ω > (n+1)ε. For the LAPACK

LDLT solver (routine DSYTRS) in column 2, the iterative

refinement is performed using the routine DSYRFS. The

number of iterations (IR) required in the iterative refinement

process is listed in Table II.

Solver 1 reports errors for matrices 6 and 9, while solver

2 for matrices 3 to 6. Matrices 3 to 6 are singular and

have at least one row and column zero. These are used

in [24] to test the error return codes. Nevertheless, the

random transformation of A allows the LDLT factorization

to continue while the pivoting is not capable of removing

the zero pivots. Matrix 9 is scaled to near underflow and

hence the transformation causes it to underflow. Solver 3

has been added only to illustrate that, except for matrices 6

and 9 (which are respectively singular and scaled to near un-

derflow), pivoting does not improve the LDLT factorization

of the randomized matrix.

Table I
TEST MATRICES

1 Diagonal 6 Random, κ = 2

2 First column zero 7 Random, κ =
√

1/ε
3 Last column zero 8 Random, κ = 1/ε
4 Middle column zero 9 Scaled near underflow
5 Last n/2 columns zero 10 Scaled near overflow

Table II
COMPONENTWISE BACKWARD ERROR

Matrix SRBT-LDLT LAPACK LDLT SRBT + LDLT PIV
Type

1 0.8815e-13 (0) 0.1079e-15 (0) 0.1975e-13 (0)
2 0.4067e-13 (1) 0.2830e-13 (+) 0.4244e-13 (1)
3 0.2395e-13 (1) - 0.1242e-13 (1)
4 0.2504e-13 (1) - 0.3696e-13 (1)
5 0.5466e-13 (1) - 0.8008e-13 (1)
6 - - 0.1219e-13 (1)
7 0.3037e-13 (1) 0.3810e-13 (+) 0.6795e-13 (1)
8 0.6048e-13 (1) 0.2930e-13 (+) 0.5195e-13 (0)
9 - 0.5898e-13 (+) 0.2212e-13 (1)

10 0.3674e-13 (1) 0.8683e-13 (+) 0.1612e-13 (1)

(*) Iterative refinement number of iterations, where (+) stands
for from 1 up to a maximum of 5 iterations

B. Performance results

Figure 6 shows the performance in Gflop/s of SRBT-

LDLT against both MKL and LAPACK LDLT routines

xSYTRS (for real and double real) and xHETRS (for com-

2121

plex and double complex). Note that we compare solvers

that do not perform the same operations because SRBT-

LDLT does randomization and no pivoting while the other

two solvers include pivoting. However, a definite matrix

has been chosen for performance comparison so that no

permutations are actually made by MKL and LAPACK

(only search for pivot is performed). In our implementation

of SRBT-LDLT , we use a tile layout where data is stored

in block NB×NB (tiles) and performance is reported with

dynamic and static scheduling for four arithmetic precisions

(real, double real, complex, double complex). The static

scheduling usually outruns the dynamic one, mostly due

to the overhead of the dynamic scheduler. As mentioned

before, the progress table for SRBT-LDLT is quite efficient,

exposing the overhead caused by the dynamic scheduler.

We observe that SRBT-LDLT is about twice faster than

MKL and four times faster than LAPACK for all the four

arithmetic precisions presented in Figure 6.

Let us now study specifically the performance of the

tiled LDLT factorization routine described in Section III-A

that represents the bulk of the computation in the SRBT-

LDLT solver. This performance is compared with that of

the LU (xGETRF) and Cholesky (xPOTRF) factorization

routines from the version 2.4.1 of the PLASMA library.

Since there is no LDLT factorization in PLASMA and by

analogy to LAPACK, the tiled LDLT factorization routine

is named here xSYTRF (resp. xHETRF) for real (resp.

complex) arithmetic. Figure 7 reports the execution time of

xSYTRF, xPOTRF and xGETRF with dynamic and static

scheduling. The static scheduling scheme usually delivers

the highest performance. This happens mostly because there

is no overhead on scheduling the tasks and, as mentioned

before, the LDLT algorithm lends itself a quite efficient

progress table. As expected, LDLT is noticeably faster than

LU and only moderately slower than Cholesky. This clearly

states that it is advantageous, in terms of time, to factorize

a symmetric matrix using xSYTRF (instead of xGETRF)

and also that xSYTRF (instead of xPOTRF) can be used

on decomposing SPD matrices (or diagonally dominant

matrices, because they do not require pivoting) with no

substantial time overhead.

The parallel speedup or scalability of xSYTRF is shown

in Figure 8 for matrices of order 5000, 10000 and 20000

[N], both for dynamic and static scheduling. As anticipated,

the parallel speedup increases as the matrix order increases.

This happens because the bigger the matrix, the more tasks

are available to be executed concurrently, resulting in higher

scalability. The parallel performance actually depends on

several factors, one of them being the tile size [NB]. The

performance reported previously has been obtained with

NB = 250 and IB = 125, where IB stands for the internal

blocking size that is used by the blocked BLAS routines. As

depicted in Figure 9, 250 is not necessarily the optimal tile

size2. In order to achieve optimal performance, NB and

other parameters must be tuned accordingly to the size of

the matrix to be decomposed and the number of threads.

This could be achieved through auto-tuning; this feature is

still not available however.

 0

 50

 100

 150

 200

 250

 300

 100 200 300 400 500 600

G
flo

ps
/s

Tile Size [NB]

DSYTRF (Magnycours-48)

n = 20000 Dynamic
n = 10000 Dynamic
n = 5000 Dynamic

n = 20000 Static
n = 10000 Static
n = 5000 Static

Figure 9. Tile-size performance of tiled DSYTRF, dynamic (solid line)
and static (dashed line) scheduling (IB = 125).

V. CONCLUSION

A solver for dense symmetric indefinite systems and its

implementation for multicore machines were presented. This

solver is based on a computationally cheap randomization

technique followed by an efficient tiled LDLT factorization.

It is scalable and achieves almost the same performance as

the tiled Cholesky algorithm that can be considered as an

upper bound for performance of LDLT . Iterative refinement

in working precision is added for sake of stability, and is also

computationally negligible.

In addition to providing us with satisfying performance

results, our solver gives accurate results in LAPACK test

cases. More generally, these results illustrate that avoiding

pivoting by the technique of randomization can speed up

significantly linear algebra computations.

REFERENCES

[1] Å. Björck, Numerical Methods for Least Squares Problems.
SIAM, 1996.

[2] J. R. Bunch and B. N. Parlett, “Direct methods for solving
symmetric indefinite systems of linear equations,” SIAM J.
Numerical Analysis, vol. 8, pp. 639–655, 1971.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide.
SIAM, 1999, third edition.

2Similar results were obtained for single real, single complex and double
complex precision.

2222

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
[m

ill
is

ec
on

ds
]

Matrix order [103]

SGETRF, SSYTRF and SPOTRF (Magnycours-48)

SGETRF Dynamic
SGETRF Static
SSYTRF Dynamic
SSYTRF Static
SPOTRF Dynamic
SPOTRF Static

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
[m

ill
is

ec
on

ds
]

Matrix order [103]

DGETRF, DSYTRF and DPOTRF (Magnycours-48)

DGETRF Dynamic
DGETRF Static
DSYTRF Dynamic
DSYTRF Static
DPOTRF Dynamic
DPOTRF Static

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
[m

ill
is

ec
on

ds
]

Matrix order [103]

CGETRF, CHETRF and SPOTRF (Magnycours-48)

CGETRF Dynamic
CGETRF Static
CHETRF Dynamic
CHETRF Static
CPOTRF Dynamic
CPOTRF Static

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
[m

ill
is

ec
on

ds
]

Matrix order [103]

ZGETRF, ZHETRF and ZPOTRF (Magnycours-48)

ZGETRF Dynamic
ZGETRF Static
ZHETRF Dynamic
ZHETRF Static
ZPOTRF Dynamic
ZPOTRF Static

Figure 7. Execution time of xPOTRF, xSYTRF/xHETRF and xGETRF; dynamic (solid line) and static (dashed line) scheduling.

 1

 6

 12

 18

 24

 30

 36

 42

 48

 1 6 12 18 24 36 48

T
1

/ T
th

re
ad

s

Threads

SSYTRF (Magnycours-48)

n = 5000 Dynamic
n = 5000 Static
n = 10000 Dynamic
n = 10000 Static
n = 20000 Dynamic
n = 20000 Static
Linear

 1

 6

 12

 18

 24

 30

 36

 42

 48

 1 6 12 18 24 36 48

T
1

/ T
th

re
ad

s

Threads

DSYTRF (Magnycours-48)

n = 5000 Dynamic
n = 5000 Static
n = 10000 Dynamic
n = 10000 Static
n = 20000 Dynamic
n = 20000 Static
Linear

 1

 6

 12

 18

 24

 30

 36

 42

 48

 1 6 12 18 24 36 48

T
1

/ T
th

re
ad

s

Threads

CHETRF (Magnycours-48)

n = 5000 Dynamic
n = 5000 Static
n = 10000 Dynamic
n = 10000 Static
n = 20000 Dynamic
n = 20000 Static
Linear

 1

 6

 12

 18

 24

 30

 36

 42

 48

 1 6 12 18 24 36 48

T
1

/ T
th

re
ad

s

Threads

ZHETRF (Magnycours-48)

n = 5000 Dynamic
n = 5000 Static
n = 10000 Dynamic
n = 10000 Static
n = 20000 Dynamic
n = 20000 Static
Linear

Figure 8. xSYTRF/xHETRF scalability; dynamic (solid line) and static (dashed line) scheduling.

2323

[4] J. W. Demmel, J. R. Gilbert, and X. S. Li, “An asynchronous
parallel supernodal algorithm for sparse Gaussian elimina-
tion,” SIAM J. Matrix Anal. and Appl., vol. 20, no. 4, pp.
915–952, 1999.

[5] N. I. M. Gould, J. A. Scott, and Y. Hu, “A numerical
evaluation of sparse solvers for symmetric systems,” ACM
Trans. Math. Softw., vol. 33, no. 2, pp. 10:1–10:32, 2007.

[6] P. Hénon, P. Ramet, and J. Roman, “On using an hybrid
MPI-Thread programming for the implementation of a par-
allel sparse direct solver on a network of SMP nodes,” In
PPMA’05, LNCS, vol. 3911, pp. 1050–1057, 2005.

[7] O. Schenk and K. Gärtner, “On fast factorization pivoting
methods for symmetric indefinite systems,” Elec. Trans. Nu-
mer. Anal., vol. 23, pp. 158–179, 2006.

[8] L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. Whaley, ScaLAPACK User’s
Guide. SIAM, 1997.

[9] U. of Tennessee, PLASMA Users’ Guide, Parallel Linear
Algebra Software for Multicore Architectures, Version 2.3,
2010.

[10] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense
linear algebra for hybrid GPU accelerated manycore systems,”
Parallel Computing, vol. 36, no. 5&6, pp. 232–240, 2010.

[11] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de
Geijn, “Formal Linear Algebra Methods Environment,” ACM
Trans. Math. Softw., vol. 27, no. 4, pp. 422–455, 2001.

[12] P. E. Strazdins, “A dense complex symmetric indefinite solver
for the Fujitsu AP3000,” The Australian National University,
Technical Report TR-CS-99-01, 1999.

[13] Intel, Math Kernel Library (MKL), http://www.intel.com/
software/products/mkl/.

[14] H. Sutter, “The free lunch is over: A fundamental turn toward
concurrency in software,” Dr. Dobb’s Journal, vol. 30, no. 3,
2005.

[15] M. Baboulin, J. Dongarra, J. Herrmann, and S. Tomov,
“Accelerating linear system solutions using randomization
techniques,” Tech. Rep., 2011, INRIA Research Report 7616
and LAPACK Working Note 246.

[16] D. S. Parker, “Random butterfly transformations with appli-
cations in computational linear algebra,” Computer Science
Department, UCLA, Technical Report CSD-950023, 1995.

[17] D. Becker, M. Baboulin, and J. Dongarra, “Reducing the
amount of pivoting in symmetric indefinite systems,” Tech.
Rep., 2011, University of Tennessee Technical Report ICL-
UT-11-06 and INRIA Research Report 7621.

[18] N. J. Higham, Accuracy and Stability of Numerical Algo-
rithms. SIAM, 2002, second edition.

[19] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek,
and S. Tomov, “The impact of multicore on math software,”
2006, in Proceedings of PARA 2006, Workshop on state-of-
the art in scientific computing.

[20] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “Parallel
tiled QR factorization for multicore architectures,” Concurr.
Comput. : Pract. Exper., vol. 20, pp. 1573–1590, 2007.

[21] J. Kurzak and J. Dongarra, “Implementing linear algebra
routines on multi-core processors with pipelining and a look
ahead,” University of Tennessee, Tech. Rep. UT-CS-06-581,
2006, LAPACK Working Note 178.

[22] A. YarKhan, J. Kurzak, and J. Dongarra, “QUARK users
guide: QUeueing And Runtime for Kernels,” University of
Tennessee, Innovative Computing Laboratory, Technical Re-
port ICL-UT-11-02, 2011.

[23] J. Kurzak and J. Dongarra, “Fully dynamic scheduler for nu-
merical computing on multicore processors,” 2009, LAPACK
Working Note 220.

[24] S. Blackford and J. Dongarra, “Installation Guide for LA-
PACK,” 1999, LAPACK Working Note 41, revised version
3.0.

[25] W. Oettli and W. Prager, “Compatibility of approximate
solution of linear equations with given error bounds for
coefficients and right-hand sides,” Numerische Mathematik,
vol. 6, pp. 405–409, 1964.

[26] M. Arioli, J. W. Demmel, and I. S. Duff, “Solving sparse
linear systems with sparse backward error,” SIAM J. Matrix
Anal. and Appl., vol. 10, no. 2, pp. 165–190, 1989.

[27] R. D. Skeel, “Iterative refinement implies numerical stability
for Gaussian elimination,” Math. Comput., vol. 35, pp. 817–
832, 1980.

2424

