
Vol.:(0123456789)

International Journal of Parallel Programming (2025) 53:22
https://doi.org/10.1007/s10766-025-00799-y

Generating Sparse Matrices for Large‑Scale Spectral
Clustering on a Single GPU

Guanlin He1,2,3 · Stéphane Vialle2,3 · Marc Baboulin2

Received: 4 April 2022 / Accepted: 24 March 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2025

Abstract
Spectral clustering has many fundamental advantages over k-means clustering, but
comes at much higher time complexity and memory requirements mainly due to
similarity matrix construction and eigenvectors computation. Thus, spectral cluster-
ing is prohibitively expensive for processing large datasets. In this paper we address
the scalability challenge of spectral clustering on single-GPU architectures. An n × n
similarity matrix generally contains many elements close to zero, and can become
very sparse by applying a threshold on matrix elements. Then it can take advan-
tage of sparse storage format like CSR if the matrix is generated directly in sparse
format, which allows processing large datasets on just one GPU device. We obtain
a sparse similarity matrix by constructing the �-neighborhood similarity graph and
generating the associated sparse matrix in the CSR format on the GPU. Then we lev-
erage the spectral graph partitioning API of the GPU-accelerated nvGRAPH library
for remaining computations especially the eigen-decomposition. Finally, we provide
experiments on synthetic and real-world large datasets which demonstrate the per-
formance and scalability of our GPU implementation for spectral clustering.

Keywords Spectral clustering · GPU computing · Similarity matrix construction ·
Sparse matrix format · Parallel code optimization

 * Guanlin He
 guanlin.he@mail.xhu.edu.cn

 Stéphane Vialle
 stephane.vialle@centralesupelec.fr

 Marc Baboulin
 marc.baboulin@upsaclay.fr

1 School of Computer and Software Engineering, Xihua University, Chengdu 610039, China
2 LISN, CNRS, Université Paris-Saclay, Orsay 91405, France
3 CentraleSupélec, Gif-sur-Yvette 91192, France

http://orcid.org/0000-0003-3753-3671
http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-025-00799-y&domain=pdf

 International Journal of Parallel Programming (2025) 53:22 22 Page 2 of 36

1 Introduction

Data clustering, also known as cluster analysis, refers to an automatic process that
discovers the natural groupings (i.e., clusters) of a set of unlabeled data instances
[17]. It belongs to unsupervised machine learning and is one of the most impor-
tant and challenging tasks in data analysis and pattern recognition. Generally, the
clustering process seeks to maximize intra-cluster similarity and to minimize inter-
cluster similarity.

Various kinds of approaches for clustering have been proposed in the literature. A
well-known one is the k-means algorithm [21], which tries to minimize intra-clus-
ter distance iteratively. Although k-means has the virtue of simplicity and speedi-
ness, it usually forms convex clusters even if they do not really exist, as shown in
Fig. 1a. Besides, k-means suffers from the “curse of dimensionality” because the
Euclidean distance metric used by k-means will lose sensitivity in high-dimensional
space [6, 16]. Another disadvantage of k-means is the sensitivity to randomized cen-
troid initialization with respect to the result of clustering. Consequently, k-means
often gets stuck in local minima solutions, and sometimes even generates arbitrarily
bad clusterings, as shown in Fig. 1c. A better centroid initialization approach is the
k-means++ seeding method, which chooses centroids by adaptive probabilistic sam-
pling and generally improves both the accuracy and the speed of k-means [4].

Spectral clustering [24] is a more recent clustering method with many funda-
mental advantages over k-means. Based on graph theory, it has a close connection
with spectral graph partitioning which tries to minimize the volume of connec-
tions between clusters relatively to their size, also known as minimizing balanced
cut [25]. Essentially, spectral clustering embeds data into the sub-eigenspace of
graph Laplacian (where the cluster-properties in the data is enhanced), and then
finds the clusters in the embedded representation (often by k-means).1 However,
contrary to k-means, spectral clustering can discover non-convex clusters and is
more likely to find the global minimum owing to the embedding step, as shown
in Fig. 1b, d. Moreover, as the embedding step projects data from ℝd to ℝkc , it
can play a role of dimensionality reduction for high-dimensional data that has d
dimensions and kc clusters with d > kc , which will benefit the following k-means

Fig. 1 k-means vs. spectral clustering (SC) on 2D shape datasets

1 Therefore, spectral clustering may also be regarded as the combination of a heavy preprocessing step
(including main computations) and a classical k-means step.

International Journal of Parallel Programming (2025) 53:22 Page 3 of 36 22

step. Additionally, when kc is unknown, the eigenvalues and eigenvectors calcu-
lated in spectral clustering algorithm can be exploited to estimate the natural kc
[20, 38, 41].

Spectral clustering is attractive with the above features, but its classical algo-
rithms have a serious disadvantage: O(n3) time complexity [39], mainly due to the
construction of the similarity matrix (O(n2d)) and the calculation of eigenvectors
(O(n3) when using direct methods), for a dataset with n instances in d dimensions.
Moreover, storing the similarity matrix and the graph Laplacian matrix requires
O(n2) memory space. Therefore, the high complexities of both computational and
memory space requirements lead to a great challenge when processing large data-
sets with spectral clustering.

One way to address the scalability challenge of spectral clustering is to employ
modern parallel architectures, such as multi-core CPU and many-core GPU. The
CPU can run a few dozen heavy threads in parallel, while the GPU can run thou-
sands of light threads in parallel and achieve a higher overall instruction rate
and memory bandwidth. Thus, the GPU is specialized for highly parallel com-
putations. Due to the computational cost for constructing the similarity matrix
and computing the eigenvectors, it appears more interesting to exploit the mas-
sively parallel nature of the GPU. However, the GPU has limited global memory
resources. How to store the memory-demanding similarity matrix and the graph
Laplacian matrix on the GPU remains an important concern.

In this paper, we focus on the parallelization of spectral clustering algorithm in
order to address large datasets on a single GPU. Our main contributions are three
different algorithms and associated optimized parallel implementations for con-
structing an �-neighborhood similarity graph and storing associated sparse matrix
in Compressed Sparse Row (CSR) format on a single GPU (without using any
temporary full matrix in dense format). This can achieve significant performance
improvements, reduce substantial memory space requirements on the GPU, and
make it possible to take advantage of NVIDIA’s GPU-accelerated nvGRAPH
library for subsequent computations of spectral clustering.

This paper is a significantly extended version of our previous paper [15] pub-
lished in the proceedings of NPC 2021. First, we enhance the performance of the
two algorithms initially proposed in our previous paper by improving the CUDA
kernels and their grid and block configurations. Second, we propose a new algo-
rithm based on a chunkwise dense-to-CSR approach which outperforms the pre-
vious two algorithms in some benchmarks. We give much more details about our
parallel implementations and code optimizations on the GPU. Besides, we also
complement the investigation into related works. Finally, a more comprehensive
experimental evaluation is provided, including performance comparison against
an optimized CPU version code.

The remainder of this paper is organized as follows. Section 2 reviews the prin-
ciples of spectral clustering and Sect. 3 summarizes related works. Then Sect. 4
describes our algorithms and optimized GPU implementations for the construction
of the similarity graph/matrix in CSR format. We present in Sect. 5 the exploitation
of nvGRAPH eigensolvers for spectral graph partitioning on the GPU. Finally the
experimental evaluation is given in Sect. 6 and we conclude in Sect. 7.

 International Journal of Parallel Programming (2025) 53:22 22 Page 4 of 36

2 Spectral Clustering Principles

Given a set of data instances X = {x1,… , xn} with xi in ℝd and the number of desired
clusters kc , the first step of spectral clustering is to construct the similarity graph and
generate the corresponding similarity matrix S = [sij]i,j=1,…,n (a.k.a. affinity matrix or
adjacency matrix in the literature). Two things are worth noting as they can essen-
tially affect the final clustering result. (1) How to measure the distance or similarity
between two instances? There are a number of metrics, such as Euclidean distance,
Gaussian similarity, and cosine similarity. The choice of metric should depend on
the domain the data comes from and no general advice can be given [20]. The most
commonly used metric seems to be the Gaussian similarity function (see Eq. 2.1),
where the Euclidean distance is embedded, the parameter � controls the width of
neighborhood and the similarity is bound to (0, 1]. However, the cosine similarity
metric (see Eq. 2.2) appears to be more effective for data in high-dimensional space
[16]. Note that by definition sij = 0 if i = j , i.e., the diagonal elements of the similar-
ity matrix are always 0. (2) How to construct the similarity graph? There are several
common ways, such as full connection, �-neighborhood and k-nearest neighbor [20].
The first way generates a dense matrix. The last two ways yield typically a sparse
similarity matrix by setting the similarity sij to 0 if the distance between instances xi
and xj is greater than a threshold (�) or xj is not among the nearest neighbors of xi ,
respectively. However, the k-nearest neighbor seems more computationally expen-
sive as it requires sorting operations.

The generated similarity matrix S is symmetric and of n × n size. Then we derive the
diagonal degree matrix D with degi =

∑n

j=1
sij . Next, we calculate the (unnormal-

ized) graph Laplacian L = D − S which does not depends on the diagonal elements
of the similarity matrix and whose eigenvalues and eigenvectors (together called
eigenpairs) are associated with many properties of graphs [20]. Moreover, L can be
further normalized as the symmetric matrix Lsym ∶= D−1∕2LD−1∕2 or the non-sym-
metric matrix Lrw ∶= D−1L . In order to achieve good clustering in broader cases,
it is argued and advocated [20] to use normalized instead of unnormalized graph
Laplacian, and in the two normalized cases to use Lrw instead of Lsym . Obviously,
choosing a Laplacian matrix and its properties impacts the choice of solvers that can
be used to calculate its eigenvectors (e.g., choosing Lrw will not allow the use of the
dense symmetric eigensolver syevdx in the cuSOLVER library [26]).

From the graph cut point of view, clustering on a dataset X corresponds to parti-
tioning a graph G into kc partitions by finding a minimum balanced cut. Therefore,

(2.1)Gaussian similarity metric: sij = exp

⎛
⎜⎜⎜⎝
−

���xi − xj
���
2

2

2�2

⎞
⎟⎟⎟⎠

(2.2)Cosine similarity metric: sij =
xi ∙ xj

∥ xi ∥∥ xj ∥

International Journal of Parallel Programming (2025) 53:22 Page 5 of 36 22

spectral clustering is similar to spectral graph partitioning, except that the former
includes similarity graph/matrix construction step while the latter does not. Ratio
cut and normalized cut are the two most common ways to measure the balanced cut,
however minimizing ratio cut or normalized cut is an NP-hard optimization prob-
lem. Fortunately, the algorithm can be approximated from the first kc eigenvectors
(associated with the smallest kc eigenvalues) of graph Laplacian matrix [20, 22].
Let U denote the n × kc matrix containing the eigenvectors as columns. Then each
row of U can be regarded as the embedded representation in ℝkc of the original data
instance in ℝd with the same row number.

Finally, the k-means algorithm is applied on the embedded representation by
regarding each row of the matrix U as a kc-dimensional point, which therefore
allows to find kc clusters of original n data instances. In addition, before perform-
ing the final k-means, it is customary to scale each row of matrix U to unit length to
improve the clustering result.

To summarize, spectral clustering involves several data transformation steps,
illustrated in Fig. 2. A similarity matrix is computed based on the nature of the data-
set and the clustering objective to model a connectivity graph, and then a Lapla-
cian matrix is deduced, highlighting some information about the graph topology and
the desired clustering. Eigenvectors are extracted, transcribing the information from
the Laplacian matrix and allowing to form a n × kc matrix where the n input data
are encoded in the eigenspace of the first kc eigenvectors. In this space, a simple
k-means can then group the input data into kc clusters.

3 Related Works

We have investigated not only the related works on GPU-accelerated spectral clus-
tering, but also the existing works on similarity graph construction and on the calcu-
lation of the first few eigenpairs since they constitute the two most computationally
expensive steps of spectral clustering.

3.1 GPU‑Accelerated Spectral Clustering

The first paper on this topic [42] that we found was published in 2008, shortly after
CUDA came out. It parallelizes spectral clustering algorithm on multi-core CPU

Fig. 2 Main computation steps in spectral clustering

 International Journal of Parallel Programming (2025) 53:22 22 Page 6 of 36

and on GPU. However, dense matrices are constructed and the benchmark datasets
contain only thousands of instances.

Then, an example of video segmentation through spectral clustering in pixel
level has been implemented on a cluster of GPUs [35], but unfortunately the authors
introduced too briefly their parallelization details and did not give performance anal-
ysis of their parallel implementation.

Another work [18] proposes a parallel implementation for spectral clustering on
CPU-GPU hybrid platforms. It constructs a sparse representation of the similar-
ity graph, but it assumes the neighborhood information is given beforehand by an
edge list, which facilitates the construction process. Their benchmark datasets are
of medium size, with n at most in the order of 105 . Besides, speedup limitations are
reported for the eigen-decomposition step.

NVIDIA has developed efficient implementations of spectral graph partitioning
on the GPU [8, 9, 22], and released the products in the nvGRAPH library [25] and
RAPIDS cuGraph library [31]. However, since these works are oriented to graph
analytics, they typically assume the edge list or the adjacency list of a graph is avail-
able, thus do not consider the graph construction process which would take O(n2d)
arithmetical operations in the general sense of spectral clustering.

3.2 Similarity Graph/Matrix Construction

To the best of our knowledge, most existing works on graph construction [2, 3, 7,
12] target k-nearest neighbor graph. We found few related works on the construction
of �-neighborhood graph in sparse format on the GPU. The sole work on it that we
found [18] constructs sparse similarity matrix in COO format but on the assumption
that the neighborhood information is given by an edge list. However, in data cluster-
ing, it is generally assumed that the neighborhood information is not available in
advance. Consequently, similarity matrix construction becomes harder especially in
sparse format (see Sect. 4).

Note that there are many works and libraries on CSR-based sparse matrix–vector
multiplication on GPU, e.g., Greathouse and Daga [11], Gao et al. [10], NVIDIA
[27], but they usually assume CSR format matrices are already provided.

3.3 Eigensolver Methods and GPU Implementations

We briefly summarize three well-known methods for the calculation of the first few
eigenpairs of a matrix. They include new matrix transformations to facilitate the
eigenvectors extraction and are not specific to spectral clustering.

• Arnoldi’s method [33]: it takes any input matrix (like L, Lsym or Lrw , see Sect. 2)
and transforms it into an Hessenberg matrix, then calls an eigensolver (usually
based on the QR algorithm). This is a generic but computationally expensive
method.

• Lanczos method [33]: similar to Arnoldi’s method but requires a real and sym-
metric (or Hermitian) input matrix (like L or Lsym) which is transformed into a

International Journal of Parallel Programming (2025) 53:22 Page 7 of 36 22

tridiagonal matrix, before calling an eigensolver (like QR). It is considered as
an efficient method but it suffers from numerical instabilities and cannot handle
eigenvalues with multiplicity (which often happens in spectral clustering) [22].

• LOBPCG method [19]: requires a symmetric input matrix (like L or Lsym) or a
pair of matrices with one symmetric and one symmetric positive definite (like
(L, D)), then starts extracting the smallest kc eigenpairs. The LOBPCG method
performs some transformations of the matrices and calls other eigensolvers on
smaller internal submatrices. LOBPCG is more recent (released in 2000) than
the previous two methods. Compared to Lanczos method, LOBPCG can handle
eigenvalues with multiplicity and is more stable numerically. [22].

Implementations of these methods exist in different libraries. They require input
matrices in dense or sparse format and are sometimes improved to be more robust
to numerical instabilities. Mainly interested in GPU-accelerated implementations
for large sparse matrices, we have surveyed the sparse eigensolvers of several GPU-
accelerated libraries including cuSOLVER, nvGRAPH, cuGraph, MAGMA, AmgX,
and ViennaCL.

The cuSOLVER library [26] is a GPU-accelerated library from NVIDIA provid-
ing LAPACK-like features (decompositions and linear system solutions) for both
dense and sparse matrices. The sole sparse eigensolver within cuSOLVER (includ-
ing cuSolverSP) is csreigvsi, which is dedicated to sparse matrices defined in
CSR storage format. However, it solves the simple eigenvalue problem by shift-
inverse power method which requires an initial guess of eigenvalue and calculates
only one eigenpair at a time. Thus it appears unsuitable for our need to automatically
find the first few eigenpairs.

The nvGRAPH library [25] is dedicated to graph analytics with a set of graph
algorithms optimized for the GPU. It was first released in 2017 with NVIDIA
CUDA 8.0. The library contains three eigensolver-embedded (specifically Lanczos
solver and LOBPCG solver) algorithms for spectral graph partitioning, which can
satisfy our need. We show in Sect. 5 the use of these algorithms with more details.
However, since the last release in November 2019 with CUDA 10.2, NVIDIA
does not actively develop the nvGRAPH product any more. Despite this situation,
the code and installation guide of nvGRAPH library is publicly available,2 which
provides a way for nvGRAPH users to continue using nvGRAPH after the CUDA
Toolkit stops releasing it. In place of nvGRAPH, NVIDIA has been actively devel-
oping the cuGraph library for a few years. It is very similar to the nvGRAPH library
as it contains most nvGRAPH algorithms (including only two graph partitioning
algorithms). However, the nvGRAPH is used in the CUDA environment while the
cuGraph, as part of RAPIDS [31], is mainly used through Python interfaces with
CUDA source code hidden behind. Despite this fact, we have built with efforts the
cuGraph library (version associated with CUDA 11.5) from source3 on our machine,
and we succeeded in using the C++/CUDA API of cuGraph’s graph partitioning

2 https:// github. com/ rapid sai/ nvgra ph.
3 https:// github. com/ rapid sai/ cugra ph/ blob/ branch- 22. 04/ SOURC EBUILD. md.

https://github.com/rapidsai/nvgraph
https://github.com/rapidsai/cugraph/blob/branch-22.04/SOURCEBUILD.md

 International Journal of Parallel Programming (2025) 53:22 22 Page 8 of 36

algorithms. However, according to our experiments we found that the LOBPCG-
eigensolver-embedded algorithm that exists in nvGRAPH seems to be missing in
cuGraph, which is adverse for our use. So we conclude that the nvGRAPH library
fits better our need than the current cuGraph library.

The MAGMA library4 [36] is a public domain linear algebra library optimized
for “multi-core + multi-GPU” hybrid architectures. The sole sparse eigensolver of
MAGMA is a generic GPU implementation of the LOBPCG method (not particu-
larly designed for the eigenvalue problem of spectral clustering). We tried it (with
MAGMA 2.5.4) to calculate the eigenvectors of the graph Laplacian matrix, but
unfortunately it failed (see Sect. 6.1.2).

The Algebraic Multigrid Solver (AmgX) library5 [23] is a GPU-accelerated core
solver library from NVIDIA that accelerates computationally intense linear solver
portion of simulations. It possesses multiple eigensolvers such as power iteration
solver, subspace iteration solver, Arnoldi solver, Lanczos solver, LOBPCG solver,
etc. Besides, the ViennaCL library6 [32] is an open-source linear algebra library
designed for many-core architectures (GPUs, MIC) and multi-core CPUs. It includes
eigensolvers based on power iteration and Lanczos methods. But we have yet to test
the eigensolvers of AmgX and ViennaCL libraries for spectral clustering.

Certainly, it is also possible to implement a new eigensolver and a new spectral
clustering library by leveraging existing works on CSR-based sparse matrix–vector
multiplication on GPU [10, 11]. However, this would be a huge work.

Based on the above findings, we mainly rely on the sparse eigensolvers embedded
in nvGRAPH’s graph partitioning algorithms.

4 Construction of the Similarity Graph/Matrix in Sparse Format

Initially we implemented spectral clustering on the GPU by constructing the simi-
larity matrix and Laplacian matrix in dense format, then exploiting the dense sym-
metric eigensolver syevdx of cuSOLVER library and finally applying the GPU
implementation of the k-means algorithm [14]. However, as the number of data
instances n grows over the order of 104 , it becomes impossible to store the dense-
format square matrices with limited GPU memory.

In this section we focus on the design of efficient GPU algorithms for construct-
ing the similarity matrix in CSR format, which play an important role in handling
the scalability challenge of spectral clustering in terms of both computational cost
and memory requirements.

4 https:// icl. utk. edu/ magma/ index. html.
5 https:// github. com/ NVIDIA/ AMGX.
6 http:// vienn acl. sourc eforge. net.

https://icl.utk.edu/magma/index.html
https://github.com/NVIDIA/AMGX
http://viennacl.sourceforge.net

International Journal of Parallel Programming (2025) 53:22 Page 9 of 36 22

4.1 Sparsification and Choice of a Storage Format

The similarity matrix associated with �-neighborhood graph or k-nearest neighbor
graph generally has a sparse pattern, i.e., containing many zeros. Even for the simi-
larity matrix associated with fully connected graph, we observe that usually a signif-
icant portion of elements are very close to 0. By setting a small threshold for simi-
larity and regarding those below-threshold similarities as 0, we are likely to obtain
a sparse similarity matrix. We think this sparsification way is reasonable since it
resembles the way of �-neighborhood graph. The difference is that the former sets
below-threshold similarities to 0 and while the latter sets similarities associated with
over-threshold distances to 0. For simplicity, we call both of the related graphs as �
-neighborhood-like graph in this paper. Storing the similarity matrix in a sparse for-
mat will require much less memory space than a dense storage and thus will increase
significantly the size of datasets able to be processed on the GPU.

There are various formats for storing a sparse matrix. Several commonly used
ones are: Coordinate format (COO), Compressed Sparse Row format (CSR), Com-
pressed Sparse Column format (CSC), and Ellpack format [5, 8, 30]. We choose
the CSR format for storing sparse similarity matrix because it is well suited to both
regular and irregular (e.g., power law distribution) sparsity patterns [8] and usually
requires less memory than COO and Ellpack formats. Moreover, the CSR format is
efficient for matrix–vector computations7. With these advantages, the CSR format
has been widely used and supported in most libraries. Finally, we intend to use the
spectral graph partitioning algorithms for the nvGRAPH library and they support
only the CSR format for graph representation.

The CSR format of a sparse matrix consists of three arrays. We call them csr-
Val[], csrCol[], csrRow[]. Figure 3 gives a CSR example with the mr × nc
matrix. csrVal[] and csrCol[] store the values and column indexes of all
nonzero matrix elements in row-major format, respectively. csrRow[] considers
the first nonzero element in each row of the matrix (i.e., the circled red numbers in
the figure) and holds their indexes that count in csrVal[] (i.e., the blue numbers
circled by red ellipses), and in the end contains the total number of nonzero elements
of the matrix. In other words, csrRow[] considers the number of nonzeros (in row-
major order) before the first nonzero element of each row and stores it in row-major
order. Therefore, the memory requirements for CSR format are 2 × nnz + mr + 1 ,

Fig. 3 An example of CSR format for storing an m
r
× n

c
 matrix

7 From SciPy API reference: scipy.sparse.csr_matrix.

 International Journal of Parallel Programming (2025) 53:22 22 Page 10 of 36

where nnz represents the total number of nonzeros in a matrix (see annotations on
right side of Fig. 3). In graph analytics, the CSR representation of similarity graph
corresponds to an adjacency list, where for each vertex vi , the neighbors vj,… , vk
and optionally the corresponding edge weights wj,… ,wk are listed.

We also introduce the Ellpack format as it will be used as an intermediate stor-
age format later in one of our proposed algorithms. It consists of two arrays. We
call them elpVal[] and elpCol[]. Figure 4 gives an Ellpack example with the
mr × nc matrix. Let maxNnzRow denote the maximum number of nonzero elements
in a row. For each row, a segment of size maxNnzRow is reserved in elpVal[]
and elpCol[] for storing the values and column indexes of nonzero elements of
that row in row-major order. If a row has fewer nonzeros than maxNnzRow, then
the extra space will be wasted, as marked ‘*’ in the figure. Therefore, the memory
requirements for Ellpack format are 2 × mr × maxNnzRow.

4.2 Difficulties

We want to address the memory space bottleneck of large-scale spectral clustering
by storing the similarity matrix in CSR format. Hence it makes no sense to first con-
struct the similarity matrix using a dense format storage and then transform it from
dense to CSR format. It seems that the construction of similarity matrix should be
directly performed in CSR format. However, several restrictions make it difficult to
be efficiently implemented in parallel especially on the GPU. First, the total number
of nonzero elements is unknown, so we cannot allocate memory for csrVal[] and
csrCol[]. Moreover, the number of nonzeros per row is unknown, thus we cannot
know in advance in which segment of csrVal[] and csrCol[] we should store
the value and column index of each nonzero entry, respectively. Besides, although
GPU threads can compute similarities and check nonzeros in parallel, they are una-
ble to store nonzeros (values and column indexes) at the right places of csrVal[]
and csrCol[], since each thread does not know the number of nonzeros ahead of
it. In contrast, the Ellpack format, which we use for intermediate storage, will cause
us fewer problems (see Sect. 4.4).

We point out that in this paper only �-neighborhood-like graph construction is
considered for generating sparse similarity matrix. The k-nearest neighbor graph
does not have the first two issues stated above, but it requires expensive sorting
operations. In the following we propose 3 different algorithms and their associated

Fig. 4 An example of Ellpack format for storing an m
r
× n

c
 matrix

International Journal of Parallel Programming (2025) 53:22 Page 11 of 36 22

GPU implementations for the parallel construction of �-neighborhood-like similarity
graph and matrix in CSR format, always avoiding storing the full similarity matrix
in dense format. Due to space limitation, we only present the code listing of the
most complex kernel (Listing 1).

4.3 Algo CSR‑1: Straightforward CSR

Algorithm 1 describes the construction of the CSR format similarity matrix in the
straightforward way. It is mainly composed of two full passes across all the ele-
ments of similarity matrix. The first pass (1stPass kernel) is dedicated to count
the number of nonzeros per row into nnzPerRow[] after computing each similar-
ity and finding nonzeros that satisfy a predefined threshold. Then we can get the
total number of nonzeros (nnz) and allocate exact size of memory for csrVal[]
and csrCol[]. Moreover, csrRow[] can be derived from nnzPerRow[] with
an exclusive scan, which allows to know the location of nonzeros related to each
row in csrVal[] and csrCol[]. With all these information, the second pass
(2ndPass kernel) can then parallelly store the nonzeros into csrVal[] and
csrCol[] after recomputing all similarities and recomparing them against the
threshold (they could not be saved in the first pass).

Fig. 5 Grid and block configuration for our CUDA kernels. Each solid frame stands for a similarity
matrix, each green box stands for a block of threads, a thick dash box stands for similarities processed by
one block of threads

 International Journal of Parallel Programming (2025) 53:22 22 Page 12 of 36

Algorithm 1 Straightforward construction of the CSR format similarity matrix
(Algo CSR-1)

For the 1stPass kernel, we choose to create a 2D grid with 2D blocks of
threads. As shown in Fig. 5 (a), the grid covers all the elements of similarity matrix.
Thus each thread takes care of one matrix element, and count it as a nonzero if the
predefined threshold is satisfied. Then the number of nonzeros is first accumulated
within each block into shared memory using the atomicAdd_block opera-
tion. Finally we accumulate the results of blocks of the same row to get the num-
ber of nonzeros per row into global memory using classic atomicAdd operation.
Although the design of this kernel is typical, it should be noted that the maximum
y-dimension of a grid (65535) is far smaller than the maximum x-dimension of a
grid (231 − 1 = 2 147 483 647) so the calculated number of blocks in y dimension
may exceed the limit if n is large enough. In this case, we consider the horizontal
partitioning of the similarity matrix into chunks as large as possible and launch one
grid for each chunk. Finally, the first pass of our Algo CSR-1, launching one or sev-
eral grids, processes the entire n × n similarity matrix as long as this matrix and the
n input data instances fit into the memory of a single GPU. Fortunately, as we store
the similarity matrix in CSR format, we can process very large datasets on a single
GPU.

For the 2ndPass kernel, we choose to create a 1D grid with 2D blocks.
Several points need to be noted: (1) As shown in Fig. 5b, each block of threads
processes some rows of the similarity matrix in an iterative fashion (illustrated
by arrows), i.e., moving forward segment by segment, so that each block knows
its own sections for storing nonzeros in csrVal[] and csrCol[] (according
to csrRow[]) and meanwhile different blocks can work independently in par-
allel. (2) In each iteration, each block of threads parallelly computes a segment
of similarity matrix, finds threshold-satisfied nonzeros and stores them into
shared memory arrays. Then only the threads in the first column of each block
copy the nonzeros from shared to global memory. (3) Particularly, when testing
whether an element in shared memory is nonzero or not, we choose to check its
column index (vs. -1) instead of its similarity value (vs. 0) because there is a
risk that the floating-point underflow may occur for the similarity value if it is
too small. (4) Again considering the maximum y-dimension of a grid (65535)

International Journal of Parallel Programming (2025) 53:22 Page 13 of 36 22

may be insufficient in case of large n while the maximum x-dimension of a grid
(231 − 1 = 2 147 483 647) is usually sufficiently large, we choose to create the
1D grid in x dimension but regard it as in y dimension.

For the exclusive scan step, we leverage the easy-to-use exclusive_scan API
of NVIDIA’s Thrust library [29].

4.4 Algo CSR‑2: Ellpack‑to‑CSR

Algorithm 2 describes the construction of the CSR format similarity matrix
based on an Ellpack-to-CSR approach. The basic idea is to try to first store the
similarity matrix in Ellpack format and then convert it into CSR format. So
we need to make a hypothesis for the maximum number of nonzeros in a row
(hypoMaxNnzRow), and allocate two temporary arrays of Ellpack format (csr-
ValMax[] and csrColMax[]) with the size of n × hypoMaxNnzRow (n is the
number of instances).

The algorithm is primarily composed of a single full pass across all the ele-
ments in similarity matrix, and if necessary a supplementary pass across a part of
similarity matrix. The full pass (fullPass kernel) undertakes multiple tasks:
(1) it computes all similarities and counts the number of nonzeros per row into
nnzPerRow[]; (2) it stores as many nonzeros as possible in the Ellpack arrays;
(3) it records the restarting places in each row for the possible supplementary
pass in case that the hypothesis (hypoMaxNnzRow) is too small. With nnzPer-
Row[], we can easily get the real maximal number of nonzeros in a row (maxN-
nzRow), csrRow[], and the total number of nonzeros (nnz) which allows to allo-
cate memory for csrVal[] and csrCol[]. If our hypothesis is large enough
(i.e., maxNnzRow <= hypoMaxNnzRow), indicating the constructed Ellpack arrays
contain the information of all nonzeros, then it just remains to fill the CSR arrays
(csrVal[] and csrCol[]) by an Ellpack-to-CSR copy (ellpackToCSR ker-
nel). However, if our hypothesis is too small (i.e., maxNnzRow > hypoMaxNnzRow),
indicating the constructed Ellpack arrays miss some nonzeros, then besides the Ell-
pack-to-CSR copy we also need to conduct a supplementary pass (supPass ker-
nel) to find the missing nonzeros and store them at the right places in csrVal[]
and csrCol[]. Note that the supplementary pass does not traverse all elements of
similarity matrix, but only starts the work from the restarting indexes recorded by
the first pass.

 International Journal of Parallel Programming (2025) 53:22 22 Page 14 of 36

Algorithm 2 Construction of the CSR format similarity matrix based on an Ell-
pack-to-CSR approach (Algo CSR-2)

For each kernel, we choose to create a 1D grid with 2D blocks, as shown in
Fig 5b. Like the 2ndPass kernel of Algo CSR-1, the points (1)(3)(4) also apply to
the kernels of Algo CSR-2.

For the fullPass kernel (shown in Listing 1), we declare several shared mem-
ory arrays for storing similarities in dense format, storing nonzeros in Ellpack format,
and some other uses (line 7). Note that 2D blocks will demand too much shared mem-
ory if hypoMaxNnzRow is large, so to support larger hypothesis we need to reduce
block y dimension (e.g., use 1D blocks). In each iteration, each block of threads par-
allelly computes a segment of similarity matrix, finds threshold-satisfied nonzeros
and stores all similarities of the segment into shared memory arrays in dense format
(lines 11–27). Then the nonzeros stored in the dense-format shared arrays are found
and accumulated into Ellpack-format shared arrays by only the threads in the first col-
umn of each block (lines 34–41). Meanwhile these threads also record the restarting
column indexes (aligned to multiples of 32 memory words for performance concern)
and corresponding restarting nonzero element indexes in each row in case the number
of nonzeros per row exceeds hypoMaxNnzRow (lines 35 & 45). Since usually only a
fraction of elements are nonzeros, we also record the number of nonzeros found per
iteration so that we can avoid the accumulating and recording operations in case no
nonzero is found in an iteration (lines 23, 31 & 49). This helps to reduce warp diver-
gence. Similarly, we set a flag once the hypoMaxNnzRow is reached so as to avoid
unnecessary operations (lines 33 & 42). Additionally, the number of nonzeros per
iteration is accumulated into the number of nonzeros per row.

International Journal of Parallel Programming (2025) 53:22 Page 15 of 36 22

Listing 1: fullPass kernel of Algo CSR-2

 International Journal of Parallel Programming (2025) 53:22 22 Page 16 of 36

After finishing the outermost loop, a fraction of threads update the restarting indexes
in case the number of nonzeros in a row is no more than hypoMaxNnzRow (List-
ing 1, lines 57–61). Now since the nonzeros are contiguously stored in shared Ell-
pack arrays, each block of threads can parallelly and iteratively copy the nonzeros
into global Ellpack arrays with coalescence (lines 66–69). Finally, a fraction of
threads store the number of nonzeros per row and the restarting indexes into global
memory arrays (lines 72–75). By the way, we point out that for all the kernels in this
paper, we ensure most of the global memory accesses are coalesced (e.g., line 16),
and we use the __expf() function instead of the expf() function for Gaussian
similarity computation (line 20) because the former maps directly to the hardware
level, thus it is faster (but provides lower accuracy) than the latter [28].

For the ellpackToCSR kernel, each block of threads first loads its global start-
ing offsets and per-row ending offsets for storing nonzeros. Then the nonzeros that
have been successfully recorded in global Ellpack arrays are iteratively copied into
global CSR arrays with coalescence. Finally a fraction of threads record the global
restarting index (for storing nonzeros) by adding the global starting offsets and per-
row ending offsets.

The supPass kernel is similar to the 2ndPass kernel of Algo CSR-1. How-
ever, the difference is that each block of threads in the supPass kernel starts the
work from the restarting indexes recorded before while in the 2ndPass kernel of
Algo CSR-1 each block of threads starts the work from the beginning of each row.

Similar to Algo CSR-1, we leverage the easy-to-use exclusive_scan API of
NVIDIA’s Thrust library to implement the scan step.

4.5 Algo CSR‑3: Chunkwise Dense‑to‑CSR

Algorithm 3 describes the construction of the CSR format similarity matrix based on
a chunkwise dense-to-CSR approach. As mentioned in Sect. 4.2, it makes no sense
to first construct the similarity matrix with dense format storage and then transform
it from dense to CSR format, since for datasets with large number of instances (n)
it would be impossible to store the n × n similarity matrix in dense format with lim-
ited GPU memory. However, it is feasible to construct only a chunk of similarity
matrix in dense format at a time so that we can convert each part into CSR format
and finally merge the CSR results of all parts to obtain the CSR representation of
the whole similarity matrix. We consider partitioning the similarity matrix horizon-
tally into chunks of similar size. The horizontal partitioning can facilitate merging
the CSR results of different chunks since the CSR format is stored in row-major
order. The number of chunks can be determined automatically in the way that only
one chunk can fit into the available GPU memory or the percent of free GPU mem-
ory that we want to use. However, the total number of nonzeros is still unknown in
advance. We need to assume the maximum percentage of nonzeros in the matrix so
that we can allocate memory for CSR arrays.

For each chunk of the similarity matrix, we launch a typical kernel
called chkPass to construct the matrix chunk in dense format (accord-
ing to the grid and block configuration shown in Fig 5a) and we leverage the

International Journal of Parallel Programming (2025) 53:22 Page 17 of 36 22

Ta
bl

e
1

 C
om

pa
ris

on
 o

f o
ur

 th
re

e
G

PU
 a

lg
or

ith
m

s f
or

 c
on

str
uc

tin
g

th
e

si
m

ila
rit

y
m

at
rix

 in
 C

SR
 fo

rm
at

A
lg

o
C

SR
-1

A
lg

o
C

SR
-2

A
lg

o
C

SR
-3

M
et

ho
d

fe
at

ur
e

St
ra

ig
ht

fo
rw

ar
d

El
lp

ac
k-

to
-C

SR
C

hu
nk

w
is

e
de

ns
e-

to
-C

SR
A

dd
iti

on
al

 in
pu

t
N

o
hy

po
M

ax
N

nz
Ro

w
 (h

yp
o)

sp
M

ax
N

zP
ct

 (s
pp

),
m

em
U

se
Ra

te
N

um
be

r o
f c

om
pu

te
d

si
m

ila
rit

ie
s

2
n
2

n
2
 to

 2
n
2

n
2

Su
pp

or
te

d
sp

ar
si

ty
 p

at
te

rn
A

ll
A

ll
bu

t r
eg

ul
ar

 sp
ar

si
ty

 p
at

te
rn

s a
re

 p
re

fe
rr

ed
A

ll
G

PU
 im

pl
em

en
t-a

tio
n

1
s
t
P
a
s
s

 k
er

ne
l +

2
n
d
P
a
s
s

 k
er

ne
l +

Th
ru

st
e
x
c
l
u
s
i
v
e
_
s
c
a
n

f
u
l
l
P
a
s
s

 k
er

ne
l +

e
l
l
p
a
c
k
T
o
C
S
R

 k
er

ne
l +

s
u
p
P
a
s
s

 k
er

ne
l +

Th
ru

st
e
x
c
l
u
s
i
v
e
_
s
c
a
n

c
h
k
P
a
s
s

 k
er

ne
l +

cu
SP

A
R

SE
 A

PI
s +

Th
ru

st
t
r
a
n
s
f
o
r
m

Si
ze

 o
f a

rr
ay

s s
to

re
d

in
 G

PU
 R

A
M

In
pu

t d
at

a
ar

r.:
 n
⋅
d

C
SR

 a
rr.

: 2
⋅
n
n
z
+
n
+
1

n
n
z
P
e
r
R
o
w

 a
rr.

: n
+
1

In
pu

t d
at

a
ar

r.:
 n
⋅
d

C
SR

 a
rr.

: 2
⋅
n
n
z
+
n
+
1

n
n
z
P
e
r
R
o
w

 a
rr.

: n
+
1

El
lp

ac
k

ar
r.:

 2
n
⋅
h
yp
o

Re
st

ar
t.

id
x

ar
r.:

 2
n

In
pu

t d
at

a
ar

r.:
 n
⋅
d

C
SR

 a
rr.

:
2
n
2
⋅
sp
p
+
n
+
1

C
hu

nk
 o

f m
at

rix
:

n
⋅
n
b
R
o
w
P
er
C
h
u
n
k

cu
SP

A
R

SE
 w

or
ks

pa
ce

M
ax

 re
qu

ire
d

sh
ar

ed
 m

em
or

y
pe

r b
lo

ck

(in
 b

yt
es

)
si
ze

o
f(
fl
o
a
t)
⋅
D
b
.y
⋅
D
b
.x

+
si
ze
o
f(
in
t)
⋅
D
b
.y
⋅
(D

b
.x
+
1
)

si
ze
o
f(
fl
o
a
t)
⋅
D
b
.y
⋅
(D

b
.x
+
h
yp
o
)

+
si
ze
o
f(
in
t)
⋅
D
b
.y
⋅
(D

b
.x
+
h
yp
o
+
3
)

U
nk

no
w

n
(d

ue
 to

 th
e

us
e

of
 c

uS
PA

R
SE

)

 International Journal of Parallel Programming (2025) 53:22 22 Page 18 of 36

cusparseDenseToSparse_xxx functions of NVIDIA’s GPU-accelerated
cuSPARSE library [27] to convert it into CSR format. Note that the chunks
should be constructed and converted one by one in order, so that we can accu-
mulate the number of nonzeros and continuously update csrRow[] using the
transform API of Thrust library. Finally, we exploit the cusparseXcsr-
sort and cusparseSgthr functions of the cuSPARSE library to merge the
CSR results obtained from each chunk so that we obtain the CSR format of the
whole similarity matrix.

Algorithm 3 Construction of the CSR format similarity matrix based on a
chunkwise dense-to-CSR approach (Algo CSR-3)

4.6 Comparison of the Three Algorithms

Table 1 compares in many aspects our three algorithms for constructing the similar-
ity matrix in CSR format on a single GPU. Each algorithm has its own advantages
and drawbacks compared to other two algorithms. Most importantly, Algo CSR-1
needs the most similarity computations but requires the least amount of GPU global
memory and no extra parameter, while Algo CSR-3 needs the fewest similarity
computations but may require most of the GPU global memory, and surely requires
more than 2n2 accesses to global memory and two extra parameters. Algo CSR-2
can be regarded as a trade-off algorithm between the two previous algorithms, but
it requires the most efforts to be efficiently implemented. Besides, although it can
support all kinds of sparsity patterns like the other two algorithms, it prefers regular
sparsity patterns that are favorable to Ellpack format. Finally, it can require too much
shared memory per block if the hypoMaxNnzRow or the block y dimension is great.

Based on the above analysis and our experimental results in Sect. 6.3, we give
some advice on how to choose among the three algorithms in practice:

International Journal of Parallel Programming (2025) 53:22 Page 19 of 36 22

• If the dataset has many dimensions (large d), which means it is expensive to
compute each similarity based on the values of all dimensions, then we recom-
mend using Algo CSR-3 or Algo CSR-2 as they compute much fewer similarities
than Algo CSR-1.

• If the dataset has a huge number of instances (large n), then we suggest using
Algo CSR-2, because it computes much fewer similarities than Algo CSR-1 and
meanwhile requires much fewer accesses to global memory than Algo CSR-3.

• If the user does not want to tune any extra parameters, or if the user wants to
acquire some initial knowledge of the similarity matrix (e.g., maxNnzRow, nnz,
sparsity) before running any faster algorithms, then Algo CSR-1 is the very
choice.

According to our experiments, we think hundreds of dimensions may be regarded
as large d, and millions of instances may be regarded as large n in the context of our
algorithm selection guide.

We point out that we have considered whether it would be possible to exploit the
symmetry property of similarity matrix to halve the similarity computations. Unfor-
tunately, none of the above algorithms seem suitable to utilize the symmetry due to
the complicacy of CSR format. Besides, we have also considered whether it would
be easier and faster to first construct the similarity matrix in COO format and then
convert it into CSR format. However, we found that similar restrictions and difficul-
ties (see Sect. 4.2) would exist when using COO format. Moreover it would require
an extra COO-to-CSR conversion and also more memory space for storing both
COO and CSR results. Nevertheless, all our three algorithms above can be readily
generalized to COO-format similarity matrix construction if necessary.

5 Spectral Graph Partitioning using nvGRAPH

With the CSR format similarity matrix constructed in Sect. 4, the remaining steps
of spectral clustering can be completed on a single GPU by calling the “Spectral
Clustering API” of the nvGRAPH library. The API supports two graph partitioning
algorithms based on balanced cut minimization with embedded eigensolvers.

• Minimization of the balanced cut with Lanczos method. The balanced cut refers
to the volume of inter-cluster connections relative to the size of clusters. The
algorithm constructs the Laplacian matrix and then calls the Lanczos solver to
calculate the smallest eigenpairs.

• Minimization of the balanced cut with LOBPCG method. Similar to the second
algorithm, but it utilizes the LOBPCG eigensolver to handle the constructed
Laplacian matrix.

Compared to Lanczos method, LOBPCG can handle eigenvalues with multi-
plicity [22] (which often happens in spectral clustering). Moreover, the NVIDIA
implementation of LOBPCG is able to restart the computation when it encounters

 International Journal of Parallel Programming (2025) 53:22 22 Page 20 of 36

numerical instabilities. Thus the LOBPCG-embedded algorithm has appeared to be
the most reliable on our benchmarks.

We emphasize that despite its name called by nvGRAPH, the API does not take
care of similarity graph/matrix construction. It actually takes the similarity graph in
CSR topology (equivalent to similarity matrix in CSR format) as input graph and
performs spectral graph partitioning which includes several steps like Laplacian
matrix computation, eigen-decomposition, and final k-means clustering (see Sect. 2
and Fig. 2). Note that the nvGRAPH documentation [25] does not report which type
of Laplacian matrix is constructed in the above algorithms. Besides, the API has
also a modularity maximization algorithm for graph partitioning, which constructs a
modularity matrix and finds its largest eigenpairs (while the balanced cut minimiza-
tion algorithms constructs the Laplacian matrix and finds its smallest eigenpairs).

Listing 2: Usage of the nvGRAPH spectral graph partitioning API

Listing 2 shows the usage of the API. Before invoking the nvgraphSpectral-
Clustering function, we should first conduct some preparation steps in sequence
(lines 2–22): initialize the nvGRAPH library, create a graph descriptor, upload
graph data in CSR format, and specify the parameters. The tolerance and the maxi-
mal number of iterations should be given appropriate values for both eigensolver
and final k-means. They can affect the clustering quality and elapsed time. With all
settings done, we call the nvgraphSpectralClustering function which par-
titions the similarity graph using spectral technique and returns cluster assignments
of all vertices as well as the first kc eigenpairs (lines 25–26).

We point out that the API also has some limits: (1) it does not support directed
graphs; (2) it supports only the CSR format for graph representation; (3) the sup-
ported maximum number of edges equals the maximum value for int type, which
is about 2 billion in case of using 32 bits for int; (4) it only scales to single GPU.
The first two limits have little effect on our current work, but the last two limits

International Journal of Parallel Programming (2025) 53:22 Page 21 of 36 22

really prohibit us from advancing spectral clustering to even larger scale. The same
limits exist for the corresponding APIs in cuGraph library.

6 Experiments and Discussion

6.1 Experimental Framework

In this section we experiment and evaluate our GPU implementation for spectral
clustering.8 It mainly concerns the GPU algorithms for constructing the similar-
ity graph/matrix in CSR format and the use of the nvGRAPH library for graph
partitioning.

6.1.1 CSR Format Similarity Graph/Matrix Construction

Apart from the GPU algorithms and implementations for CSR graph/matrix con-
struction, we have also developed a well optimized parallel CPU implementation
related to Algorithm 1 as a baseline for performance comparison9 (we did not find
any other established baseline for valid comparison). It is parallelized with OpenMP
for multi-threaded execution. In order to be efficient, we have implemented a single
large parallel region, so that threads are activated then deactivated only once during
the algorithm execution. In this unique region, we have parallelized external loops
of heavy and quasi regular loop nests with and without OpenMP’s reduction.
Moreover, internal loops have been designed to facilitate auto-vectorization with gcc
for AVX units. To differentiate each implementation of CSR matrix construction,
we call them “CPU CSR-1”, “GPU CSR-1”, “GPU CSR-2” and “GPU CSR-3” in
this section.

So, we will compare our GPU and CPU optimized implementations for the CSR
matrix construction step.

6.1.2 Spectral Graph Partitioning using LOBPCG Eigensolver

We take advantage of nvGRAPH’s LOBPCG-embedded algorithm for the graph
partitioning step on GPU, as explained in Sect. 5. We tried to compare the perfor-
mance of nvGRAPH’s LOBPCG eigensolver with MAGMA’s LOBPCG eigensolver
since they are both GPU implementations of LOBPCG. However, the former is
refined to specifically address the Laplacian (generalized) eigenvalue problem [22]
and is encapsulated in the spectral graph partitioning/clustering API of nvGRAPH,
while the latter is a generic GPU implementation of LOBPCG without necessary
adaptation for spectral clustering. Therefore, we failed to run MAGMA’s LOBPCG

8 Our code is available on https:// github. com/ guanl in- he/ clust ering- relea se.
9 The baseline code is available on https:// github. com/ guanl in- he/ clust ering- relea se/ blob/ main/ modul es/
spect ral_ clust ering/ constr_ sim_ matrix_ on_ cpu. cc.

https://github.com/guanlin-he/clustering-release
https://github.com/guanlin-he/clustering-release/blob/main/modules/spectral_clustering/constr_sim_matrix_on_cpu.cc
https://github.com/guanlin-he/clustering-release/blob/main/modules/spectral_clustering/constr_sim_matrix_on_cpu.cc

 International Journal of Parallel Programming (2025) 53:22 22 Page 22 of 36

eigensolver for spectral clustering (encountered an unexpected “floating point excep-
tion” error).

Then, we have compared with scikit-learn’s SpectralClustering API
which is a CPU implementation that encapsulates a LOBPCG eigensolver. Our
experimental results presented in [13] show that NVIDIA’s LOBPCG-embedded
graph partitioning algorithm (on GPU) runs significantly faster than that of scikit-
learn (on CPU) when the number of instances to be processed is large enough, e.g.,
a speedup from ×8 to ×28 when processing 104 instances (processing larger datasets
would be too time-consuming for scikit-learn).

So we did not succeed in establishing a valid comparison against CPU or GPU
implementations for the graph partitioning step.

6.1.3 Hardware and Software Configuration

All experiments are performed on a server consisting of two Intel Xeon Silver 4114
processors as CPU with 96 GB RAM, and a NVIDIA GeForce RTX 3090 as GPU.
Each CPU processor has the following features: released in 2017, Skylake architec-
ture, 10 physical cores (20 logical cores), 2.20 GHz base frequency, AVX/AVX2/
AVX512 support, 13.75 MB L3 cache. In constrast, the GPU has the following fea-
tures: released in 2020, Ampere architecture, 1.70 GHz max clock rate, 5248 CUDA
cores, 24 GB RAM. The CPU and GPU are connected by a PCIe 3.0 x16 bus with a
theoretical bandwidth of 16 GB/s and a experimental end-to-end bandwidth close to
12.5 GB/s.

The operating system is Ubuntu 20.04.3. The CPU code is compiled by gcc
9.3.0 with-Ofast -funroll-loops -march=native optimization flag

Table 2 Datasets and parameter settings of our benchmarks

* To obtain acceptable clustering quality, the threshold 0.8 is good for MNIST60K and MNIST120K,
while a higher threshold (0.84) is required for MNIST240K. - [1] Although the thresholds for Syn1M
and Syn5M appear ×4 greater than those used in our previous paper [15], they have equivalent effects
because the former are for the squared distance while the latter are in fact for the squared distance
divided by the # of dimensions (4)

Dataset (n, d, k
c
) Similarity metric Threshold Supposed max.

% of nonzeros for
Algo 3(%)

Tolerance
for eigen-
solver

MNIST60K (60 K, 784, 10) Cosine 0.8 (sim.) 1 0.005
MNIST120K (120 K, 784, 10) Cosine 0.8 (sim.) 1 0.005
MNIST240K (240 K, 784, 10) Cosine 0.8 0.84*(sim.) 1 0.005
Syn1M (1 M, 4, 4) Gauss-

ian(� = 0.01)
0.0008 (sq. dist.) 0.01 0.001

Syn5M (5 M, 4, 4) Gauss-
ian(� = 0.01)

0.0004 (sq. dist.) 0.001 0.0001

International Journal of Parallel Programming (2025) 53:22 Page 23 of 36 22

and-fopenmp flag. The GPU code is compiled by nvcc of CUDA Toolkit 11.510
with –gpu-architecture=sm_86. Computations are in single precision.

6.2 Datasets and Parameter Settings

For all our experiments we focus on large datasets. Table 2 summarizes the data-
sets and algorithmic parameter settings used in our experiments. The datasets can be
classified into two categories:

• MNIST-based. They include MNIST60K, MNIST120K and MNIST240K. The
first one is the training set of the well-known MNIST database of handwritten
digits,11 while the last two ones are produced using the InfiMNIST code.12 They
all have 784 dimensions and 10 clusters.

• Synthetic. We create two million-scale datasets called Syn1M and Syn5M with
our data generator.13 They all have 4 dimensions and 4 convex clusters.

In the beginning we perform feature scaling for the synthetic datasets to trans-
form every dimension into the range of [0, 1].

We adopt the cosine similarity metric for the MNIST-based data because it is
more effective than the Gaussian similarity for high-dimensional data (as introduced
in Ina et al. [16] and as we verified empirically). In contrast, we use Gaussian simi-
larity for our low-dimensional synthetic datasets.

We impose a threshold on the similarity value or the squared distance to construct
the �-neighborhood-like graph and associated sparse similarity matrix (see explana-
tion in Sect. 4.1). For comparison, we set the same threshold (0.8) on the similar-
ity for all MNIST-based datasets. Using this threshold can result in good enough

Table 3 Characteristics of the constructed sparse similarity matrices

Dataset Max nnz in a row Avg. nnz
per row

Total nnz (M) Sparsity
(%)

MNIST60K 2196 251 15.1 99.581
MNIST120K 3310 299 35.9 99.751
MNIST240K 5552 478 114.8 99.801
MNIST240K* 3520 199 47.8 99.917
Syn1M 54 23 23.4 99.998
Syn5M 64 29 149.9 99.999

10 A compilation warning reports that “libcusolver.so.10, needed by /usr/lib/gcc/x86_64-linux-gnu/../lib-
nvgraph.so, may conflict with libcusolver.so.11” since the latest nvGRAPH library comes from CUDA
10.2 (see Sect. 3.3).
11 http:// yann. lecun. com/ exdb/ mnist/.
12 https:// leon. bottou. org/ proje cts/ infim nist.
13 https:// gitlab- resea rch. centr alesu pelec. fr/ Steph ane. Vialle/ cpu- gpu- kmeans.

http://yann.lecun.com/exdb/mnist/
https://leon.bottou.org/projects/infimnist
https://gitlab-research.centralesupelec.fr/Stephane.Vialle/cpu-gpu-kmeans

 International Journal of Parallel Programming (2025) 53:22 22 Page 24 of 36

clustering quality for MNIST60K and MNIST120K, but we need a higher thresh-
old (0.84, marked with *) for MNIST240K to achieve similar clustering quality.
For Syn1M and Syn5M, we set a threshold (0.0008 and 0.0004 respectively) on the
squared distance.

Regarding GPU CSR-3, we suppose that the maximum percentage of nonzeros
in the associated similarity matrix (in contrast to sparsity) is 1% for the MNIST-
based datasets, 0.01% for Syn1M and 0.001% for Syn5M. After allocating enough
memory for the CSR arrays, we query the amount of remaining free GPU RAM via
cudaMemGetInfo and allocate 80% of it for storing a chunk of similarity matrix.

For nvGRAPH’s LOBPCG-embedded algorithm, several parameters need to be
specified (see Listing 2). We simply set the maximal number of iterations to the
nvGRAPH default values (defined by NVIDIA), i.e., 4000 for the LOBPCG eigen-
solver and 200 for the final k-means. However, we found that the approximation

Table 4 Optimal block size configuration for our CUDA kernels

BSX and BSY represent the block size in x and y dimensions, respectively. (N/A) represents that with
the given hypo, the supPass kernel consumes little time regardless of the block size, or the supPass
kernel is not involved in the computation

Dataset GPU CSR-1
(BSX, BSY)

GPU CSR-2
(BSX, BSY) <hypo>

GPU CSR-3
(BSX, BSY)

1stPass
kernel

2ndPass
kernel

fullPass
kernel

supPass
kernel

chkPass kernel

MNIST60K (32, 16) (64, 4) (64, 2) <512>
(128, 4)

<1024>
(128, 1)

<2048>

(128, 2) <512>
(128, 2)

<1024>
(N/A)

<2048>

(32, 16)

MNIST120K (32, 16) (64, 4) (64, 2) <512>
(128, 4)

<1024>
(128, 1)

<2048>

(128, 2) <512>
(128, 2)

<1024>
(128, 2)

<2048>

(32, 16)

MNIST240K (32, 16) (64, 4) (64, 2) <512>
(128, 4)

<1024>
(128, 1)

<2048>

(128, 4) <512>
(128, 2)

<1024>
(128, 2)

<2048>

(32, 16)

MNIST240K* (32, 16) (64, 4) (64, 2) <512>
(256, 4)

<1024>
(128, 1)

<2048>

(128, 2) <512>
(128, 2)

<1024>
(128, 2)

<2048>

(32, 16)

Syn1M (32, 8) (32, 4) (32, 4) <16>
(32, 4) <32>
(32, 4) <54>

(128, 1) <16>
(128, 1) <32>
(N/A) <54>

(32, 16)

Syn5M (32, 8) (32, 4) (32, 4) <16>
(32, 4) <32>
(32, 4) <64>

(128, 1) <16>
(128, 1) <32>
(N/A) <64>

(32, 16)

International Journal of Parallel Programming (2025) 53:22 Page 25 of 36 22

tolerance for the eigensolver needs to be tuned with care because it has a significant
impact on the clustering quality and the execution time. After some experimental
tests, we set the tolerance of eigensolver to 0.005 for the MNIST-based datasets,
0.001 for Syn1M and 0.0001 for Syn5M. Besides, the tolerance for the k-means
algorithm is set to a classical value of 0.0001 for all benchmarks (the result is not
very sensitive to this parameter).

6.3 Performance of the Similarity Matrix Construction

Table 3 shows the characteristics of the similarity matrices constructed by any of
our algorithms with the previously specified settings. It turns out that all the simi-
larity matrices are extremely sparse (with sparsity greater than 99%) although they
contain tens or hundreds of millions of nonzeros.

6.3.1 Tuning of the Grid and Block Configuration

As we all know, the grid and block configuration (i.e., dimension and size) for a
CUDA kernel can have a significant impact on the kernel performance. One of the
suggestions [28] is that a grid should have sufficient number of blocks so that all
multiprocessors of the GPU are kept busy, and meanwhile each multiprocessor
should have multiple active blocks and sufficient number of active warps so as to
hide latencies and keep the hardware busy. Although these suggestions are provided,
it requires experiments to determine the optimal grid and block configuration of
each kernel and for each dataset. Instead of creating only 1D grids with 1D blocks
for all our CUDA kernels [15], now we choose to create 2D grids with 2D blocks for
the 1stPass kernel of GPU CSR-1 and the chkPass kernel of GPU CSR-3, and
create 1D grids with 2D blocks for the other kernels (see details in Sects. 4.3, 4.4
and 4.5).

Fig. 6 Performance comparison of GPU CSR-1 vs. GPU CSR-2 on MNIST120K dataset

 International Journal of Parallel Programming (2025) 53:22 22 Page 26 of 36

Table 4 shows the optimal block size in x and y dimensions that we found experi-
mentally by trying many possible configurations for each kernel and each bench-
mark. For each kernel, we tried approximately 10 configurations of grid and blocks,
each requiring the modification and recompilation of the source code, and the re-
execution of the new binary code, which is time-consuming. Due to space limita-
tion, we do not illustrate here the impact of block size on kernel performance, but
essentially, block sizes close to the optimal ones are often sub-optimal choices, i.e.,
a block size close to the optimal is often a relatively good or acceptable choice,
while block sizes far from the optimal ones may lead to about ×2 to ×5 lower kernel
performance. It can be observed from the table that on our RTX 3090 although the
optimal block sizes are different for different kernels, they are similar for datasets of
the same category (which is quite user-friendly), and all have at least 128 threads per
block. Particularly, the optimal block size for the chkPass kernel of GPU CSR-3
is constant (BSX=32, BSY=16) for all benchmarks. As expected, we need to reduce
the size of block y dimension for the fullPass kernel when hypoMaxNnzRow
(abbr. hypo) becomes large leading to proportionally more shared memory con-
sumption per block (see Sect. 4.4 for explanation).

Fig. 7 Impact of free GPU RAM usage rate on the performance of GPU CSR-3 (In each figure, the left
axis shows the elapsed time related to green lines, while the right axis shows the number of chunks
related to the brown line)

International Journal of Parallel Programming (2025) 53:22 Page 27 of 36 22

6.3.2 Tuning of the hypo Parameter for GPU CSR‑2

As shown in Fig. 6, we take the MNIST120K benchmark as an example to study the
performance of each kernel of GPU CSR-1 and GPU CSR-2, especially the impact
of hypoMaxNnzRow on the performance of GPU CSR-2. Note that the hypoMaxN-
nzRow is irrelevant to the 1stPass and 2ndPass kernels of GPU CSR-1. The
optimal block sizes for the fullPass and supPass kernels of GPU CSR-2 vary
gradually with hypoMaxNnzRow, so the performance presented in the figure for each
value of hypoMaxNnzRow is obtained with the corresponding optimal block size.
The ellpackToCSR kernel of GPU CSR-2 consumes so little time compared to
the other kernels that we have omitted it in the figure. Note that each time in Fig. 6
was measured 3 to 5 times and appeared stable.

The fullPass kernel of GPU CSR-2 always computes the n2 similarities
regardless of the hypoMaxNnzRow parameter. The computation of similarities is
the most time-consuming part of the kernel, so its execution time should remain
constant as seen in Fig. 6 up to a hypothesis of 512. However, this kernel allocates
shared memory in an amount proportional to the hypothesis, which can lead to an
increase in execution time. This phenomenon is suspected to be the cause of the two
sudden slowdowns when the hypothesis grows from 2942 to 2943 and from 3998 to
3999 (see Fig. 6).

A Stream Multiprocessor (SM) of GPU may have several resident blocks of
threads which can help the scheduler of blocks hide the latency time of global mem-
ory accesses. However, each SM has a limited amount of shared memory, L1 cache
and registers, and supports a limited number of threads, therefore the number of
blocks that can reside simultaneously in a Stream Multiprocessor depends on the
amount of shared memory and registers required by each block and the number of
threads per block. Moreover, on our RTX 3090 GPU device (Ampere architecture),
L1 cache and shared memory are unified in a 128 KB of fast memory. So increas-
ing shared memory would decrease L1 cache and could limit the number of resi-
dent blocks. In our code, the amount of shared memory per block depends on the
hypoMaxNnzRow parameter, and the turning point at 2943 corresponds to crossing
the 24 KB per block. However, due to the complexity of SM resource configura-
tions, we were unable to calculate and clearly demonstrate a change in the number
of resident blocks or a significant decrease in the amount of L1 cache.14 Neverthe-
less, using large values for hypoMaxNnzRow requires more and more resources for
each block, and introduces major disruptions in our kernel’s performance.

On the contrary, the supPass kernel recomputes on each row only the simi-
larities beyond the hypothesis and its execution time decreases when the hypothesis
increases. Finally, there is a range of hypothesis values for which the total time of
GPU CSR-2 is lower than GPU CSR-1 ([180-2942] on our measurements in Fig. 6).

14 The NVIDIA Nsight Compute tool offers an occupancy calculator that may be helpful towards this,
however we failed to employ this tool on our remote testbed due to seriously slow reactions of the graph-
ical user interface.

 International Journal of Parallel Programming (2025) 53:22 22 Page 28 of 36

Ta
bl

e
5

 P
er

fo
rm

an
ce

 o
f t

he
 si

m
ila

rit
y

m
at

rix
 c

on
str

uc
tio

n
in

 C
SR

 fo
rm

at

Th
e

be
st

re
su

lt
(th

e
sh

or
te

st
ex

ec
ut

io
n

tim
e)

 in
 e

ac
h

ro
w

 is
 h

ig
hl

ig
ht

ed
 in

 b
ol

d

D
at

as
et

C
PU

 C
SR

-1
 (s

)
G

PU
 C

SR
-1

 (s
)

G
PU

 C
SR

-2
 (s

)
G

PU
 C

SR
-3

 (s
)

1
th

r.
20

 th
r.

40
 th

r.
<

1s
t h

yp
o>

<
2n

d
hy

po
>

<
3r

d
hy

po
>

M
N

IS
T6

0K
18

15
14

6
74

5.
53

3.
91

 <
51

2>
4.

49
 <

10
24

>
5.

42
 <

20
48

>
3.
04

M
N

IS
T1

20
K

74
27

59
0

30
1

22
.2

7
17

.1
2

<
51

2>
19

.0
5

<
10

24
>

21
.0

9
<

20
48

>
11

.0
9

M
N

IS
T2

40
K

28
,2

93
25

02
12

66
91

.4
7

77
.7

8
<

51
2>

83
.0

7
<

10
24

>
85

.2
9

<
20

48
>

43
.8
4

M
N

IS
T2

40
K

*
29

,5
20

26
50

12
44

91
.0

5
62

.7
1

<
51

2>
59

.0
3

<
10

24
>

72
.5

2
<

20
48

>
43

.5
6

Sy
n1

M
28

45
19

4
15

1
14

.0
1

7.
71

 <
16

>
5.

71
 <

32
>

5.
66

 <
54

>
17

.6
2

Sy
n5

M
to

o
lo

ng
57

72
39

28
36

3.
69

24
2.

69
 <

16
>

17
6.

06
 <

32
>

14
5.
89

 <
64

>
43

5.
76

International Journal of Parallel Programming (2025) 53:22 Page 29 of 36 22

GPU CSR-2 can therefore run faster but requires some tests to identify the interest-
ing hypothesis range.

6.3.3 Tuning of the Dense Matrix Chunk Size for GPU CSR‑3

As presented in Algorithm 3, our Algo CSR-3 runs the chkPass kernel and
calls routines of cuSPARSE library, both need memory space for data structures
to generate a chunk of similarity matrix. A small chunk requires a small part of
available memory, leaving a lot of memory to the library, but processing a small
chunk in parallel can be inefficient for our kernel. Processing a large chunk leaves
a small part of memory for the library which could be slowed down. We experi-
mentally investigated this problem.

The easiest way to tune the chunk size was to set the percent of available GPU
memory allocated for the chunk, the rest remaining available for the library. So,
Fig. 7 investigates the impact of the percent of free GPU RAM allocated for a
chunk of similarity matrix (see explanation in the penultimate paragraph of
Sect. 6.2) on the performance breakdown of GPU CSR-3 (green lines) indicated

Fig. 8 Speedup of the similarity matrix construction in CSR format on GPU vs. CPU

 International Journal of Parallel Programming (2025) 53:22 22 Page 30 of 36

on left y-axis. Again, each time was measured 3 to 5 times and appeared stable.
Besides, the number of chunks is presented by a brown line indicated on right
y-axis. Note that we consider only the range from 10 to 90% for the free memory
usage rate because it is meaningless to process a too small chunk on GPU and it
is necessary to leave some memory for cuSPARSE functions. For all benchmarks,
the initialization of our algorithm takes only 0.1% of GPU CSR-3’s global time
and the final mergeCSR step costs less than 0.2%, so they are not presented in the
figure. According to Fig. 7, it can be seen from the green lines that:

• For the MNIST-based datasets, the performance of GPU CSR-3 (including its
chkPass kernel and denseToCSR step) is very stable when the memory usage
rate varies. The elapsed time is dominated by the chkPass kernel while the
denseToCSR step consumes little time.

• For Syn1M and Syn5M, the chkPass kernel performance is also very stable as
the memory usage rate changes. However, the execution time of the denseToCSR

Fig. 9 Scalability of the similarity matrix construction in CSR format

Table 6 Clustering quality and
elapsed time of nvGRAPH’s
LOBPCG-embedded graph
partitioning algorithm (based on
10 runs)

Dataset Clustering
quality

Time of nvGRAPH (s)

ARI NMI Min. Max. Average

MNIST60K 0.44 0.66 2.30 3.34 2.88
MNIST120K 0.50 0.67 3.48 4.59 3.95
MNIST240K* 0.56 0.73 4.41 5.90 5.01
Syn1M 1.00 1.00 3.63 5.18 4.08
Syn5M 1.00 1.00 17.67 19.15 18.25

International Journal of Parallel Programming (2025) 53:22 Page 31 of 36 22

step becomes significant and less stable on Syn1M and makes the time of GPU
CSR-3 less stable. This instability becomes more severe on Syn5M. Specifi-
cally, the performance deteriorates when the memory usage rate decreases under
30% for Syn1M, and the memory usage rate resulting in optimal performance is
80% for Syn5M. The performance deterioration in case of decreasing memory
usage rate (which leads to a growing number of chunks as shown by brown lines)
appears in the denseToCSR step implemented by calling cuSPARSE functions
(including matrix descriptor creations and matrix conversions) which are per-
formed once for each chunk.

In any case, a free memory usage rate of 80% for storing a matrix chunk appears
the best choice on our GPU device.

6.3.4 GPU vs. CPU Performance Comparison

Table 5 compares the performance of CPU and GPU algorithms on different data-
sets. Each result on GPU is the average time of 5 consecutive runs with low fluctua-
tions, while each result on CPU is the rounded time of a single run as it takes much
longer (which also showed slight fluctuations whenever we checked it). Since our
CPU has 20 physical cores (40 logical cores), we measured the performance of CPU
CSR-1 running 1, 20 and 40 threads. In particular, the time of CPU CSR-1 using 1
thread is too long (over 20 h) on the Syn5M dataset so we did not get the final time.
Figure 8 visualizes the speedup of GPU algorithms versus the best performance of
CPU CSR-1 (using 40 threads and auto-vectorization). Note that the speedups are
based on the unrounded time of CPU CSR-1, thus slightly different from those based
on the rounded ones presented in Table 5.

Globally, it can be seen that multi-threading accelerates significantly CPU CSR-
1, however, it is still much slower than any of the GPU algorithms. Compared to the
best performance of CPU CSR-1, GPU CSR-1 is ×10.8 to ×13.8 faster, depending
on hypoMaxNnzRow GPU CSR-2 can be ×13.6 to ×26.9 faster, and GPU CSR-3 is
×8.6 to ×28.9 faster.

With the chosen values for hypoMaxNnzRow, GPU CSR-2 can outperform GPU
CSR-1 and this superiority is especially significant on MNIST240K*, Syn1M and
Syn5M benchmarks. This is because the gain from reducing similarity computations
surpasses the cost of recording restarting indexes for GPU CSR-2 (see Sect. 4.4).

Fig. 10 Global performance of spectral clustering on the GPU

 International Journal of Parallel Programming (2025) 53:22 22 Page 32 of 36

Compared to the other GPU algorithms, GPU CSR-3 is around ×2 faster on the
MNIST-based datasets but is significantly slower on Syn1M and Syn5M. In fact,
GPU CSR-3 computes relatively much fewer similarities (n2 instead of 1× to 2 × n2),
but requires many extra global memory accesses (n2 writes and n2 reads). On the
MNIST-based datasets which have numerous dimensions leading to long similarity
computations, GPU CSR-3 achieves a speedup. However, on Syn1M and Syn5M
datasets which have only 4 dimensions and million-scale n, it reaches less perfor-
mance than the other GPU algorithms.

To reveal a possible scalability phenomenon, we plot the T(n) curve in logarith-
mic scales (on both axes T and n) based on the results in Table 5, where T denotes
the elapsed time and n denotes the number of data instances. We obtain the scal-
ability graph of Fig. 9 showing straight lines with slopes close to 2, meaning that the
elapsed time varies quadratically with n for all the CPU and GPU algorithms. Hence
all the algorithms follow the O(n2d) complexity of similarity matrix construction,
although in CSR format. They are all scalable to large datasets, but our GPU algo-
rithms on a GeForce RTX 3090 are considerably faster than the parallelized and
auto-vectorized CPU algorithm on a dual Xeon Silver 4114.

6.4 Performance of nvGRAPH’s LOBPCG‑Embedded Algorithm

After obtaining the CSR format similarity matrix, we leverage the LOBPCG-embed-
ded graph partitioning algorithm of the nvGRAPH library to fulfill the remaining
steps of spectral clustering on the GPU (see Sect. 5). Table 6 presents the elapsed
time of the nvGRAPH algorithm and the final clustering quality measured by two
commonly used metrics: Adjusted Rand Index (ARI) and Normalized Mutual Infor-
mation (NMI) [37]. Both metrics return a score less or equal to 1, and a score closer
to 1 indicates a better clustering. The results in the table are based on 10 runs. For
the MNIST-based datasets which are gray-scale digit images of 28 × 28 = 784 pix-
els, the ARI and NMI scores achieved by our spectral clustering implementation are
around 0.5 and 0.7 respectively. The NMI score is close to that obtained in Yang
et al. [40] by spectral clustering algorithm and is better than that obtained by the
k-means algorithm. The clustering quality on Syn1M and Syn5M (formed by convex
clusters) is perfect.

For all benchmarks we observed a certain degree of performance fluctuations.
Although the theoretical complexity of eigenvector computation is O(n3) in the
worst case, our experiments exhibit a low complexity close to O(log(n)) on the
MNIST-based datasets and close to O(n) on Syn1M and Syn5M datasets. We infer
there are two reasons for this good performance. First, the constructed similar-
ity matrices are extremely sparse and the numerous matrix–vector multiplications
of the LOBPCG eigensolver are efficiently performed in CSR format. Second, the
LOBPCG solver adopts an iterative and approximate method instead of expensive
direct methods. Note that the time of initializing the nvGRAPH library takes about
0.7 to 1 s with CUDA 11.5, and it is not included in the performance measurements.

International Journal of Parallel Programming (2025) 53:22 Page 33 of 36 22

6.5 Global Performance of Spectral Clustering

Figure 10 presents the global performance of spectral clustering on the GPU, con-
sisting in the performance of the best algorithm for CSR-format similarity matrix
construction and the performance of nvGRAPH’s LOBPCG-embedded algorithm.
The similarity matrix construction appears to be the most time-consuming part of
spectral clustering especially on MNIST120K, MNIST240K* and Syn5M, mainly
due to its O(n2d) time complexity. The elapsed time consumed by the LOBPCG-
embedded algorithm appears to take the second place.

Data transfers between the CPU and the GPU are performed with pinned memory
to achieve higher bandwidth and they occur only at the beginning and end of the
program. Our GPU server includes a bus PCIe 3.0 × 16 with a theoretical bandwidth
of 16 GB/s but our experimental measurements always show a bandwidth close to
12.5 GB/s. Our largest benchmark (MNIST240K) requires to transfer 0.718 GB of
input data and output results, leading to a communication time close to 0.06 s plus
the time of locking and unlocking related CPU memory (due to our implementa-
tion). The data allocations and deallocations are performed in the beginning and the
end of our program or during computation steps for the purpose of calculations, so
their time is not counted in the transfer time. Finally, in all our benchmarks, our
complete transfer time always remained less than 0.20 s. Compared to the computa-
tion time which ranges from several seconds to hundreds of seconds, the transfer
time is thus negligible and is not included in the figure.

Globally, with our optimized algorithms for CSR graph/matrix generation and
nvGRAPH’s graph partitioning algorithm, we obtain a parallel implementation of
spectral clustering that is able to process large datasets entirely on the GPU in just a
few seconds to a few minutes.

7 Conclusion and Perspectives

In this paper we have addressed the scalability of spectral clustering on single-GPU
architectures. We have proposed three different algorithms and optimized parallel
implementations for the construction of the sparse similarity graph/matrix in CSR
format. Storing this matrix in CSR format, without storing the entire matrix in dense
format, enables us to save a large amount of memory space compared to the dense
format storage, which is crucial on a single GPU since it usually provides much less
memory than the CPU. Furthermore, our GPU implementations of these algorithms
are deeply optimized by applying various high-level and low-level good practices
of CUDA programming (e.g., coalesced access to global memory, full exploitation
of the shared memory, maximization of hardware utilization, minimization of warp
divergence, use of fast arithmetic instructions).

Moreover, our matrix generation in CSR format is ideally suited to the graph
partitioning algorithms provided by nvGRAPH which require the input graph to
be in CSR format. These algorithms possess built-in eigensolvers (including Lanc-
zos and LOBPCG) and the k-means implementation, so they can be leveraged to
accomplish the remaining steps of spectral clustering. We particularly favor the

 International Journal of Parallel Programming (2025) 53:22 22 Page 34 of 36

LOBPCG-embedded algorithm because the LOBPCG solver can handle eigenvalues
with multiplicity and is numerically more stable then the Lanczos solver.

With our algorithms for CSR graph/matrix construction and nvGRAPH’s eigen-
solver-embedded partitioning algorithm, we have obtained a parallelized end-to-end
spectral clustering implementation on a single GPU. Finally, experiments show that
our GPU implementation on a GeForce RTX 3090 succeeds in scaling up to mil-
lions of data instances and in running really faster than an optimized CPU code on a
dual CPU server.

Since the nvGRAPH library (which we rely on for its LOBPCG eigensolver) is
no longer being actively developed by NVIDIA after 2019, it may be necessary to
find some alternative sparse eigensolvers (especially LOBPCG) that are optimized
for the GPU. For instance, the AmgX library [23] contains multiple GPU-acceler-
ated eigensolvers including the LOBPCG solver, and the ViennaCL library [32] also
includes some GPU-accelerated eigensolvers. However, their effectiveness of being
used for spectral clustering remains to be tested in the future.

Using a LOBPCG eigensolver based on the Compressed Sparse Blocks (CSB)
matrix storage format could be also an interesting optimization, since this format
stores a collection of sparse blocks, compatible with a cache-blocking computation
strategy [1]. This strategy could be very efficient on multi-core CPU servers, and
enhance our CPU implementation. However, a LOBPCG solver using CSB format
and adapted to spectral clustering would remain to be implemented.

Globally, it would be worth comparing against other GPU libraries that neither
require nor support CSR data format for spectral clustering, and show how the pro-
posed work in this paper advances them, either in wall-clock time or required mem-
ory. However, we could not find such libraries for valid comparison.

To address even larger datasets, it would be interesting to parallelize spec-
tral clustering on multi-GPU machines which provide more computing power and
memory space. Our CSR algorithms for similarity matrix construction could be
adapted to multi-GPU architectures by going through some consecutive rows of the
similarity matrix on each GPU. However, the LOBPCG-embedded algorithm of the
nvGRAPH library on which we rely does not have a multi-GPU version yet, but
multi-GPU versions of other sparse Top-K eigensolvers could be tested (e.g., [34]).
The data transfers between multiple GPUs could be achieved using the NVIDIA
Collective Communication Library (NCCL). Another approach to addressing larger
datasets would be CPU-GPU algorithms incorporating the representative extraction
technique on CPU to reduce the number of data instances that need to be processed
on GPU [13, 39].

Acknowledgements This work was supported in part by the China Scholarship Council (No.
201807000143). The experiments were conducted on the research computing platform supported in
part by Région Grand-Est, Metz-Métropole and Moselle Departement. The authors sincerely thank the
reviewers for their valuable comments which helped a lot to improve this paper.

International Journal of Parallel Programming (2025) 53:22 Page 35 of 36 22

References

 1. Aktulga, H.M., Afibuzzaman, M., Williams, S., et al.: A high performance block Eigensolver for
nuclear configuration interaction calculations. IEEE Trans. Parallel Distrib. Syst. 28(6), 1550–1563
(2017)

 2. Anastasiu, D.C., Karypis, G.: L2knng: fast exact k-nearest neighbor graph construction with
l2-norm pruning. In: Proceedings of the 24th ACM International on Conference on Information and
Knowledge Management, pp. 791–800, (2015)

 3. Anastasiu, D.C., Karypis, G.: Parallel cosine nearest neighbor graph construction. J. Parallel Dis-
trib. Comput. 129, 61–82 (2019)

 4. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana,
USA (2007)

 5. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA. Technical report,
Nvidia Technical Report NVR-2008-004, Nvidia Corporation (2008)

 6. Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87
(2012)

 7. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for generic similarity
measures. In: Proceedings of the 20th International Conference on World Wide Web, pp. 577–586
(2011)

 8. Fender, A.: Parallel solutions for large-scale eigenvalue problems arising in graph analytics. Ph.D.
Thesis, Université Paris-Saclay (2017)

 9. Fender, A., Emad, N., et al.: Accelerated hybrid approach for spectral problems arising in graph
analytics. Proc. Comput. Sci. 80, 2338–2347 (2016)

 10. Gao, J., Qi, P., He, G., et al.: Efficient CSR-based sparse matrix-vector multiplication on GPU.
Math. Probl. Eng. (2016)

 11. Greathouse, J.L., Daga, M.: Efficient sparse matrix-vector multiplication on GPUs using the CSR
storage format. In: SC’14: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, IEEE, pp. 769–780, (2014)

 12. Hajebi, K., Abbasi-Yadkori, Y., Shahbazi, H., et al.: Fast approximate nearest-neighbor search with
k-nearest neighbor graph. In: Twenty-Second International Joint Conference on Artificial Intelli-
gence (2011)

 13. He, G.: Parallel algorithms for clustering large datasets on CPU-GPU heterogeneous architectures.
Theses, Université Paris-Saclay, https:// theses. hal. scien ce/ tel- 04114 475 (2022)

 14. He, G., Vialle, S., Baboulin, M.: Parallel and accurate k-means algorithm on CPU–GPU architec-
tures for spectral clustering. Concurr. Comput. Pract. Exp. 34(14), e6621 (2022)

 15. He, G., Vialle, S., Sylvestre, N., et al.: Scalable algorithms using sparse storage for parallel spectral
clustering on GPU. In: Cérin, C., Qian, D., Gaudiot, J.L., et al. (eds.) Network and Parallel Comput-
ing, pp. 40–52. Springer, Cham (2022)

 16. Ina, T., Hashimoto, A., Iiyama, M., et al.: Outlier cluster formation in spectral clustering. arXiv pre-
print arXiv: 1703. 01028 (2017)

 17. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)
 18. Jin, Y., JáJá, J.F.: A high performance implementation of spectral clustering on CPU-GPU plat-

forms. In: 2016 IEEE International Parallel and Distributed Processing Symposium Workshops,
Chicago, IL, USA, pp. 825–834, (2016)

 19. Knyazev, A.V.: Toward the optimal preconditioned Eigensolver: locally optimal block precondi-
tioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001)

 20. Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4) (2007)
 21. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Pro-

ceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297,
(1967)

 22. Naumov, M., Moon, T.: Parallel spectral graph partitioning. Technical report, NVIDIA Technical
Report, NVR-2016-001 (2016)

 23. Naumov, M., Arsaev, M., Castonguay, P., et al.: AmgX: A library for GPU accelerated algebraic
multigrid and preconditioned iterative methods. SIAM J. Sci. Comput. 37(5), S602–S626 (2015)

 24. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances
in Neural Information Processing Systems 14 [Neural Information Processing Systems: Natural and

https://theses.hal.science/tel-04114475
http://arxiv.org/abs/1703.01028

 International Journal of Parallel Programming (2025) 53:22 22 Page 36 of 36

Synthetic, NIPS 2001, December 3–8, 2001, Vancouver, British Columbia, Canada], pp. 849–856,
(2001)

 25. NVIDIA: NVGRAPH Library User’s Guide (DU-08010-001_v10.2). https:// docs. nvidia. com/ pdf/
nvGRA PH_ Libra ry. pdf (2019)

 26. NVIDIA: cuSOLVER Library (DU-06709-001_v12.0). https:// docs. nvidia. com/ cuda/ cusol ver/
index. html (2022a)

 27. NVIDIA: cuSPARSE Library (DU-06709-001_v12.0). https:// docs. nvidia. com/ cuda/ cuspa rse/
index. html (2022b)

 28. NVIDIA: CUDA C++ Best Practices Guide (Release 12.2). https:// docs. nvidia. com/ cuda/ cuda-c-
best- pract ices- guide/ index. html (2023a)

 29. NVIDIA: Thrust (Release 12.2). https:// docs. nvidia. com/ cuda/ thrust/ index. html (2023b)
 30. NVIDIA: NVPL Storage Formats. https:// docs. nvidia. com/ nvpl/_ static/ sparse/ stora ge_ format/

sparse_ matrix. html (2024)
 31. RAPIDS Development Team: RAPIDS: Libraries for End to End GPU Data Science. https:// rapids.

ai (2023)
 32. Rupp, K., Tillet, P., Rudolf, F., et al.: ViennaC—linear algebra library for multi-and many-core

architectures. SIAM J. Sci. Comput. 38(5), S412–S439 (2016)
 33. Saad, Y.: Numerical methods for large eigenvalue problems: Revised edition. SIAM (2011)
 34. Sgherzi, F., Parravicini, A., Santambrogio, M.D.: A mixed precision, multi-GPU design for large-

scale Top-K sparse eigenproblems. In: 2022 IEEE International Symposium on Circuits and Sys-
tems (ISCAS), pp. 1259–1263, (2022)

 35. Sundaram, N., Keutzer, K.: Long term video segmentation through pixel level spectral clustering on
GPUs. In: IEEE International Conference on Computer Vision Workshops, ICCV 2011 Workshops,
Barcelona, Spain, (2011)

 36. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid GPU accelerated
manycore systems. Parallel Comput. 36(5 &6), 232–240 (2010)

 37. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for Clusterings comparison: vari-
ants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837–2854
(2010)

 38. Xiang, T., Gong, S.: Spectral clustering with eigenvector selection. Pattern Recognit. 41(3), 1012–
1029 (2008)

 39. Yan, D., Huang, L., Jordan, M.I.: Fast approximate spectral clustering. In: Proceedings of the 15th
ACM International Conference on Knowledge Discovery and Data Mining, Paris, France, (2009)

 40. Yang, X., Deng, C., Zheng, F., et al.: Deep spectral clustering using dual autoencoder network. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4066–
4075, (2019)

 41. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information
Processing Systems 17 (NIPS 2004), December 13–18, 2004, Vancouver, Canada, pp. 1601–1608,
(2004)

 42. Zheng, J., Chen, W., Chen, Y., et al.: Parallelization of spectral clustering algorithm on multi-core
processors and GPGPU. In: 2008 13th Asia-Pacific Computer Systems Architecture Conference,
IEEE, pp. 1–8 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://docs.nvidia.com/pdf/nvGRAPH_Library.pdf
https://docs.nvidia.com/pdf/nvGRAPH_Library.pdf
https://docs.nvidia.com/cuda/cusolver/index.html
https://docs.nvidia.com/cuda/cusolver/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/thrust/index.html
https://docs.nvidia.com/nvpl/_static/sparse/storage_format/sparse_matrix.html
https://docs.nvidia.com/nvpl/_static/sparse/storage_format/sparse_matrix.html
https://rapids.ai
https://rapids.ai

	Generating Sparse Matrices for Large-Scale Spectral Clustering on a Single GPU
	Abstract
	1 Introduction
	2 Spectral Clustering Principles
	3 Related Works
	3.1 GPU-Accelerated Spectral Clustering
	3.2 Similarity GraphMatrix Construction
	3.3 Eigensolver Methods and GPU Implementations

	4 Construction of the Similarity GraphMatrix in Sparse Format
	4.1 Sparsification and Choice of a Storage Format
	4.2 Difficulties
	4.3 Algo CSR-1: Straightforward CSR
	4.4 Algo CSR-2: Ellpack-to-CSR
	4.5 Algo CSR-3: Chunkwise Dense-to-CSR
	4.6 Comparison of the Three Algorithms

	5 Spectral Graph Partitioning using nvGRAPH
	6 Experiments and Discussion
	6.1 Experimental Framework
	6.1.1 CSR Format Similarity GraphMatrix Construction
	6.1.2 Spectral Graph Partitioning using LOBPCG Eigensolver
	6.1.3 Hardware and Software Configuration

	6.2 Datasets and Parameter Settings
	6.3 Performance of the Similarity Matrix Construction
	6.3.1 Tuning of the Grid and Block Configuration
	6.3.2 Tuning of the hypo Parameter for GPU CSR-2
	6.3.3 Tuning of the Dense Matrix Chunk Size for GPU CSR-3
	6.3.4 GPU vs. CPU Performance Comparison

	6.4 Performance of nvGRAPH’s LOBPCG-Embedded Algorithm
	6.5 Global Performance of Spectral Clustering

	7 Conclusion and Perspectives
	Acknowledgements
	References

