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a b s t r a c t

The synthesis of a quantum circuit consists in decomposing a unitary matrix into a series of elementary
operations. In this paper, we propose a circuit synthesis method based on the QR factorization via
Householder transformations. We provide a two-step algorithm: during the first step we exploit the
specific structure of a quantum operator to compute its QR factorization, then the factorized matrix is
used to produce a quantum circuit. We analyze several costs (circuit size and computational time) and
compare them to existing techniques from the literature. For a final quantum circuit twice as large as
the one obtained by the best existing method, we accelerate the computation by orders of magnitude.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In the 1980s the notion of a quantum computer emerged as a
response to the announced limitation of conventional computers
in terms of computing power. Feynman [1], then Deutsch [2] an-
nounced and theorized the first foundations of this new paradigm
that must override our current machines. Ten years later, we
saw the first concrete algorithms capable of achieving this quan-
tum supremacy: the Grover algorithm theoretically enables us to
search into an unstructured database quadratically faster than in
the conventional case [3] and the Shor algorithm is expected to
be able to break RSA, jeopardizing the security of current encryp-
tion tools [4,5]. Quantum computing is now a research topic of
growing interest and many algorithms are designed in numerous
fields to try to surpass classical computers. Examples are vari-
ous: machine learning [6,7], linear algebra [8–10], backtracking
algorithms [11] or even combinatorial optimization [12]. The in-
teraction between classical computing and quantum computing is
also studied, leading to hybrid quantum-classical computers [13].
Behind all these new algorithms lies a common formalism: the
quantum circuit. Developed by Yao [14], the concept of a quan-
tum circuit remains so far the preferred way to describe quantum
algorithms. Similarly to the compilation in classical computing,
transforming a high level concept – or more generally a concept
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unknown to the hardware – into a sequence of basic instructions
for the machine is a central problem. In quantum computing,
everything can be modeled with notions of linear algebra: states
are vectors, and operators are unitary matrices. The compilation
problem can be formalized as the transformation of a unitary
matrix into a quantum circuit consisting of elementary (uni-
tary) operations admissible by the hardware and referred to as
elementary quantum gates. The development of quantum al-
gorithmics has fostered the emergence of high-level languages
[15–17] to efficiently describe and program concrete instances of
quantum algorithms. With the limited resources that are going to
be available at first for quantum computers, it is crucial to design
an automated compilation process minimizing the classical and
quantum resources used by a given quantum program.

When turning a unitary matrix into a quantum circuit, sev-
eral aspects have to be considered. First, one has to decide on
the set of admissible elementary operations. Then, one has to
choose the resources to be minimized: are we interested in the
smallest possible circuit, or are we also considering the classical
resources used to produce the circuit and the time required
to do so? The former problem is very theoretical and math-
oriented. An operator acting on n qubits is represented by a
matrix of size 2n

× 2n. Generating a circuit from an arbitrary
matrix is therefore a problem that scales exponentially in n in
general, and the problem of finding the smallest possible circuit
for a particular operator remains challenging [18]. Nonetheless,
several techniques have been developed to this end using, e.g., de-
composition methods [19–23]. The resulting number of gates
however still lies within a factor of 2 of the theoretical lower
bound [24]. We are currently in the NISQ (Noisy Intermediate-
Scale Quantum) era [25]: the quantum hardware is noisy and it
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is hard to perform long computations. In this paper we foresee
the future of the NISQ era where full fault tolerant quantum
computation will be available. With the advent of such systems,
we believe that the synthesis of generic operators on small to
medium register size will become critical. For example, one can
already get a glimpse of such issue in quantum machine learning
problems [6]. Meanwhile, we can also rely on post processing
methods that integrate the presence of noise in the hardware and
make the connection between ideal quantum circuit synthesis
and the hardware constraints [26].

Instead of only focusing on the size of the circuit, one can
consider the problem in its globality and also take into account
the quantity of classical resources needed, and in particular the
time it takes to generate the circuit. Such optimization is partic-
ularly useful, e.g. when one has to compile a continuous stream
of quantum circuits on the fly or when the quantum operator is
parameterized and one has to recompile the parameters of the
resulting quantum circuit every time the operator changes. Im-
proving the compilation time also allows to reach larger problem
sizes. This aspect of optimization is a recent topic of research
[27–30] and is the focus of our paper.

1.1. Contributions

The main contributions of the paper are as follows.

• We adapt the well known and numerically stable QR fac-
torization based on Householder transformations [31] to the
factorization of unitary matrices. The adaptation heavily re-
lies on the specific structure of unitary matrices. We exhibit
a significant theoretical and practical speedup of our specific
QR algorithm compared to the unmodified QR routine and
the usual technique for quantum circuit synthesis based on
the quantum Shannon decomposition (QSD) [23].
• We propose a complete circuit synthesis method using this

specialized QR decomposition with a complexity analysis
for circuit size and arithmetical operations. If some existing
theoretical and experimental works for quantum circuits
synthesis with Householder transformations have been un-
dertaken [32–34], to our knowledge none has proposed
an implementation method and a final circuit construction
with clearly defined properties. Overall, our technique is
faster than the QSD-based method while providing circuits
twice as large.1
• We backup our approach with benchmarks on multicore and

GPU architectures for random unitary matrices operating on
up to 15 qubits.

1.2. Plan of the paper

The plan of this paper is as follows. In Section 2 we give
some background about quantum computing, quantum circuits
and the issues in quantum compilation. Then we detail the new
adapted Householder algorithm in Section 3 and we explain in
Section 4 how to convert this factorization into a quantum circuit.
Section 5 presents the performance obtained on multicore and
GPU architectures by our algorithm. We also compare our re-
sults with a reference algorithm based on the Quantum Shannon
Decomposition method. We conclude in Section 6.

1 This extra cost in the final quantum circuit is not negligible, especially
when considering the current limitations of the quantum hardware. It may be
possible that the gain in the classical process will not compensate the execution
time of the twice as large quantum circuit on real hardware. However, we can
handle problem sizes that were unreachable before with the QSD, regardless of
the quality of the hardware. We believe our approach highlights the tradeoffs
between two measures of complexity (circuit size/compilation time) and that
this has to be taken in consideration when synthesizing generic quantum
circuits.

1.3. Notations

Throughout this paper we will use the following notations.
U(k) denotes the set of unitary matrices of size k, i.e. U(k) =
{M ∈ Ck×k

| M†M = I}, where I is the identity matrix and M†

is the conjugate transpose of the matrix M . The notation ∥ · ∥
refers to the Euclidean norm of a vector and ei is the ith canonical
vector. The term flops stands for floating-point operations and the
flop count evaluates the volume of work in a computation. Unless
otherwise specified these flops are given in complex arithmetic.
The linear algebra formulas will be presented using matlab-like
notations.

2. Background

The core of quantum computation consists in encoding infor-
mation on the state |φ⟩ of a quantum system. The computational
model is derived from the laws of quantum mechanics: the state
|φ⟩ is represented by a normalized column vector in a (finite
dimensional) Hilbert space Ck. The allowed transformations one
can perform on |φ⟩ can be derived from the Schrödinger equation.
In this paper we focus on unitary transformations. A quantum
computation acting on the vector |φ⟩ ∈ Ck is therefore in this
paper regarded as a unitary matrix U ∈ U(k). After computa-
tion, the resulting state is U |φ⟩. A sequential application of two
transformations U and V yields the state V (U |φ⟩) = (VU)|φ⟩ and
corresponds to a matrix multiplication.

The basic unit of information in quantum computation is the
quantum bit, also called qubit. It is encoded by a two-level quan-
tum system (e.g., the spin of an electron) whose state can be in
a linear superposition of both levels – called the basis states –
according to the laws of quantum mechanics. We usually write
|0⟩ to represent the first basis state and |1⟩ the second one (to
follow the analogy with the classical case). The general form |ψ⟩
of the state of a qubit is then the linear combination of these basis
elements |0⟩ and |1⟩ (also called ‘‘superposition’’):

|ψ⟩ = α|0⟩ + β|1⟩

where α, β are complex numbers such that |α|2 + |β|2 = 1. In
other words, the state of a qubit is mathematically equivalent to
a unit vector ( αβ ) ∈ C2 and the basis states are the usual basis
vectors

|0⟩ =
(
1
0

)
|1⟩ =

(
0
1

)
.

The qubit is not the only logical unit possible in quantum com-
puting: using 3-level systems (by adding the basic state |2⟩) one
can manipulate qutrits; more generally with a d-level system we
talk about qudits. However the research in quantum computing
today uses mostly qubits.

The state of the quantum system consisting of the combination
of two systems A and B resides in the Kronecker (tensor) product
of the space of states of A and the space of states of B. In par-
ticular, to encode n qubits, one can use n two-level systems that
together can be seen as a single 2n level system. The evolution
of this system is governed by the left multiplication by unitary
matrices in U(2n). The basis vectors of the space C2n are of the
form |x1⟩ ⊗ · · · ⊗ |xn⟩ with xi = 0 or 1. The usual ordering of the
basis states corresponds to the lexicographic order. For example,
in the case of two qubits the basis states are

|0⟩ ⊗ |0⟩ =
(

1
0
0
0

)
, |0⟩ ⊗ |1⟩ =

(
0
1
0
0

)
,

|1⟩ ⊗ |0⟩ =
(

0
0
1
0

)
, |1⟩ ⊗ |1⟩ =

(
0
0
0
1

)
.
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Table 1
Usual elementary unitary matrices for representing quantum gates.(

0 1
1 0

)
X

(
0 −i
i 0

)
Y

(
1 0
0 −1

)
Z

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎠
CNOT

⎛⎜⎝1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎠
SWAP

1
√
2

(
1 1
1 −1

)
H

(
1 0
0 i

)
S

(
1 0
0 eiπ/4

)
T

Fig. 1. Quantum circuit for the Quantum Fourier Transform.

To combine operators acting on distinct subsystems, we again use
the tensor product. If |ψ⟩ (resp. |φ⟩) is an n-qubit (resp. m-qubit)
state and one applies an operator A on |ψ⟩ (resp. B on |φ⟩) then
using the global system on n+m qubits it is equivalent to applying
the operator A ⊗ B on the state |ψ⟩ ⊗ |φ⟩, where ⊗ denotes the
Kronecker product [35].

When a state on n qubits cannot be written as a tensor product
of two substates then the state is said to be entangled. The Bell
states are simple examples of entangled states on two qubits, one
of them is defined by

|Φ⟩ =
1
√
2
(|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)

and one can check that it cannot be expressed as the tensor prod-
uct of two one-qubit states. Entanglement is believed to be a key
in the quantum supremacy over classical computation [36] and
research is performed to better understand its role, for example
by giving a measure of how entangled a state is [37]. An operator
that can produce entangled states is said to be an entangling
operator.

Beside composition and combination, a third operation is usu-
ally considered: an operation can be controlled. If M ∈ U(2n) is an
operator acting on n qubits, there are two canonical operations
on n+ 1 qubits: the positively-controlled-M defined as the block
matrix ( I 0

0 M ) and the negatively-controlled-M , defined as ( M 0
0 I ).

Both block-matrices are operators in U(2n+1). The former sends
|0⟩⊗|φ⟩ to |0⟩⊗|φ⟩ and |1⟩⊗|φ⟩ to |1⟩⊗ (M|φ⟩). The latter does
the opposite: it sends |0⟩ ⊗ |φ⟩ to |0⟩ ⊗ (M|φ⟩) and |1⟩ ⊗ |φ⟩ to
|1⟩ ⊗ |φ⟩.

An important notion is the preparation and de-preparation of
states. Preparing a state |Φ⟩ consists in applying an operator
U to the state |0⟩ to obtain the state |Φ⟩. Conversely, the de-
preparation of the state |Φ⟩ consists in applying U†

= U−1 to
obtain the state |0⟩.

Quantum gates. Though the theory allows arbitrary unitary ma-
trices, the physical hardware is usually only capable of handling
a fixed set of unitary matrices operating on one or two qubits.
These elementary matrices are called quantum gates, and we can
mention the following (see Table 1):

• the Pauli operators X, Y , Z (the X gate is equivalent to the
classical NOT gate),
• the Hadamard gate H which enables to transform a pure

state (i.e. |0⟩ or |1⟩) into an equal superposition of |0⟩ and
|1⟩,
• the continuous set of elementary rotations Rx, Ry, Rz defined

by

RG(α) = cos(α/2)I2 − i sin(α/2)G with G ∈ {X, Y , Z}

where X, Y , Z are the Pauli operators and i is the unit
imaginary number.
• the continuous set of phase gates defined by

Ph(θ ) =
(
1 0
0 eiθ

)
adding a phase to the state |1⟩; among this set two gates
are of particular use: the gate T (θ = π/4) and the gate S
(θ = π/2). Note that Ph(θ ) is simply Rz(θ ) modulo a global
phase e−i

θ
2 .

Amongst the frequently used 2-qubit gates, one can name the
CNOT-gate, which is the positively-controlled X-gate, and the
SWAP gate, flipping the state of two qubits. Other examples
of commonly encountered gates are controlled-rotations with
arbitrary angles.

Quantum circuit. The usual graphical language for representing
composition and combination of operator is the equivalent of the
boolean circuit for classical computing: the quantum circuit. A
quantum circuit consists in a series of parallel, horizontal wires
on which are attached boxes. Each wire corresponds to a qubit,
and vertical combination corresponds to the Kronecker (tensor)
product. The circuit is read from left to right and each box
corresponds to a quantum gate (i.e. a unitary operator) applied
on the corresponding qubits. Controlled-gates have a special rep-
resentation: the controlling qubit is represented with a bullet if
the control is positive and a circle if the control is negative. A
vertical line then connects the controlling qubit to the gate to be
controlled. The notation easily extends to multiple controls.

As an example of quantum circuit combining several gates
together, the so-called Quantum Fourier Transform [38] is rep-
resented in Fig. 1. It enables us to visualize the use of elementary
gates: H , S, T , phase-gate, and positive controls.

Universality. We say that a set of gates is universal if any quan-
tum operator, acting on any number of qubits, can be imple-
mented as a sequence of gates from this set (see e.g. [38, Sec. 4.5]
for a complete discussion on the matter). A fundamental (theoret-
ical) result claims that it is possible to perform any operator only
with the set of one-qubit gates and one ‘‘sufficiently entangling’’
2-qubit gate such as the CNOT [39]. To be able to implement
any quantum algorithm with a given piece of hardware, it is
therefore necessary to first find a universal set of technologically
implementable gates. For instance the IBM quantum machine
with superconducting qubits uses only special unitary gates on
one qubit and the CNOT [40]. A technology using trapped ions
will have other gates available like the MS gate [41,42]. Lin-
ear quantum optics will instead focus on CNOTs and one-qubit
gates [43].
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Fig. 2. Circuit equivalence for a multiplexor.

But having an implementable universal set of gates is not
enough: if we are given a quantum operator as a unitary matrix,
one also has to find a way to turn the desired unitary matrix
acting on a potentially large number of qubits into a quantum
circuit made of local, elementary gates. This problem is known as
circuit synthesis, or equivalently, compilation of the unitary into a
circuit. Note that the state preparation is a special case of circuit
synthesis where we want to synthesize only the first column of
a unitary matrix.

In this paper, we focus on the set consisting of the CNOT
gate and all the one-qubit gates. The continuous aspect of the
set makes it amenable to linear algebraic operations, and yet it
can easily be mapped to other universal gate-sets [44–47], using
for example the Solovay–Kitaev theorem [48] or more recent
techniques [49–51].

Multiplexors. Some circuit structures are expressive enough to
be reused in other constructions, thus helping during the com-
pilation process. The most important of them is the multiplexor
[23,52,53]. It can be regarded as a generalization of controlled
gates because it applies a different operator for each value of
the control qubits. For instance a multiplexor controlled by two
qubits and acting on k qubits has the matrix block structure

A =

(
A0 0 0 0
0 A1 0 0
0 0 A2 0
0 0 0 A3

)
where A0 is a k-qubit operator that is applied if both control
qubits are 0, A1 is applied if the first control qubit is 0 and the
second one is 1, etc. The graphical representation of a multi-
plexor is exemplified in Fig. 2 with the correspondence between
A and a succession of multi-controlled gates. In the circuit, the
crossed-out line stands for a several qubits (in this case, k qubits).

The problem of decomposing a multiplexor into elementary
gates admits algorithms with varying numerical costs depending
on the choice of elementary gates [23,53]. In the case of a multi-
plexor applying only one kind of elementary rotations (e.g. along
on of the axis X , Y or Z – we call such a structure a rotation
multiplexor) the transition from the angles of the multiplexors
to the angles in the quantum circuits can be done via a single
matrix/vector product [53]. Moreover, the decomposition is much
simpler than the general case shown in Fig. 2: the decomposition
of a Rk-multiplexor controlled by n qubits into two multiplexors
controlled by n− 1 qubits has the shape shown in Fig. 3 and the
special case with one control qubit is shown in Fig. 4 (where we
omit angles for legibility). Such decompositions can be applied
recursively and by removing some CNOT gates that cancel (see
Figure 2 in [23] for more details) we obtain a final quantum circuit
composed of 2n−1 CNOTs and 2n−1 elementary rotations. For
multiplexors in SU(2) the decomposition given in Fig. 3 remains
valid up to a diagonal matrix that replaces the last CNOT gate.
Hence, without considering this extra gate – for our purpose we
will be able to remove it – we need 2n−1

− 1 CNOTs and 2n−1

generic one-qubit gates to implement an SU(2)-multiplexor.

Quantum state preparation. A common method for preparing a
generic quantum state on n qubits consists in applying a series
of operations such that we are left with the preparation of a
quantum state on n − 1 qubits, and we repeat the process until
we have to prepare only a one-qubit state. Desentangling the first

Fig. 3. Decomposition of a rotation multiplexor.

Fig. 4. Decomposition of a rotation multiplexor with one control qubit.

qubit is for instance equivalent to zeroing the second half of the
components of the corresponding vector Ψ . To do so, one can
apply for each bitstring s ∈ F n−1

2 a specific two-qubit operation
Us on the first qubit such that Us(Ψ0s|0s⟩ + Ψ1s|1s⟩) = Ψ ′0s|0s⟩.
Then the global operator

⨁
s Us can be implemented either by

applying successively one Rz-multiplexor and one Ry-multiplexor,
both on the first qubit and controlled by the n − 1 other ones,
or by applying one SU(2)-multiplexor, still on the first qubit and
controlled by the other qubits [21,23]. In the case where we only
use Ry and Rz multiplexors, we can simply repeat the operation
on the n − 1 remaining qubits. Overall we need to implement
two rotation multiplexors on n qubits, two on n − 1 qubits,
etc. for a total of 2 ×

∑n
k=2 2

k−1
≈ 2n+1 CNOTs and 2 + 2 ×∑n

k=2 2
k−1
≈ 2n+1 elementary rotations. Some optimizations can

decrease the CNOT-count by a linear term in n but we focus on
the asymptotic complexity. When using multiplexors in SU(2), we
remark that the additional diagonal gate in the synthesis of the
multiplexor can be merged with the remaining quantum state as
adding phases to each component of the state will not change
the number of nonzero elements. So preparing a quantum state
with multiplexors in SU(2) requires to implement one SU(2)-
multiplexor on n qubits, one on n − 1 qubits, etc. (without
considering the extra diagonal gates) for a total of approximately
2n CNOTs and 2n generic one-qubit gates. Finally, to have the total
count for the number of elementary rotations, we decompose
each one-qubit gate U as a product of three elementary rotations
(ignoring the global phase) [38]

U = Rx(α)× Rz(β)× Rx(γ ) (1)

where α, β, γ are three real parameters. Rx rotations commute
with the CNOT gate if the Rx gate acts on the target qubit of
the CNOT gate. So for each quantum subcircuit implementing an
SU(2)-multiplexor and starting from the leftmost rotation, we can
commute the Rx gate, merge it with the next generic one-qubit
gate, and repeat the process (decomposition shown in Eq. (1),
commutation and merging) until we reach the last one-qubit gate
of the multiplexor implementation. Thus, up to a linear number
of gates, all the generic one-qubit gates can be decomposed into
only two elementary rotations, for a total of approximately 2n+1

rotation gates.

Quantum Shannon decomposition. Among the various existing
synthesis methods [38,54,55], the one giving the shortest circuits
in terms of number of gates is the Quantum Shannon Decompo-
sition (QSD) [21,23]. It relies on the following two decomposition
formulas:

• the first one is the Cosine–Sine decomposition (CSD) of a
unitary matrix on n qubits U [31]:

U =
(
A1

A2

)(
C −S
S C

)(
B1

B2

)
. (2)

A1, A2, B1, B2 are unitary matrices on n − 1 qubits and C, S
are real positive diagonal matrices such that C2

+S2 = I2n−1 .
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Fig. 5. Circuit equivalences for the QSD.

The second term in the CS decomposition is in fact a Ry-
multiplexor controlled by the n−1 least significative qubits.
The circuit equivalence is given in Fig. 5(a), where angles are
omitted for legibility.
• The second formula decomposes a multiplexor(

A1
A2

)
=

(
V

V

)(
D†

D

)(
W

W

)
(3)

with D a diagonal matrix on n− 1 qubits, and V and W are
unitary operating n − 1 qubits. The second term involving
the matrix D is in fact a Rz multiplexor controlled by the
n − 1 least significative qubits. The circuit equivalence is
represented in Fig. 5(b), again with omitted angles.

Finally, synthesizing U on n qubits is equivalent to synthesizing
3 rotation multiplexors on n qubits and 4 matrices on n − 1
qubits on which we can apply the QSD again as shown in Fig. 5(c).
We repeat the process until we get only multiplexors and gates
acting on a small number of qubits (typically 2) for which an exact
decomposition is known [56–60].

If the Quantum Shannon Decomposition gives the best asymp-
totic number of CNOTs in the circuit: 23

48 × 4n, this method
has nonetheless drawbacks. It does not take into account other
metrics useful to minimize in the compilation process such as the
classical time required to compute the circuit. The algorithm for
computing Formula (2) consists in reducing the K × K matrix U
into a 2 × 2 bidiagonal block form, then the 4 bidiagonal blocks
are simultaneously diagonalized using bidiagonal SVD algorithms.
The first part is the more expensive in terms of floating point
operations: by applying Householder reflectors to the left and
right of U , we progressively bidiagonalize U – this requires K 3/3
flops for each block – and we store the accumulation of each
Householder reflector to compute A1, A2, B1, B2 — this requires
K 3/6 flops for each block. Overall, computing the CSD on a K ×K
matrix requires 2 × K 3 flops [61]. Concerning Formula (3), one
has to perform two matrix/matrix products and an eigenvalue de-
composition. With square matrices of size K, each matrix/matrix
product on matrices requires 2 × K 3 flops and the eigenvalue
decomposition needs around 26×K 3 [62, Table 3.13]. Overall for
the first step of the Quantum Shannon Decomposition of a matrix
of size N we have to compute one CSD of a matrix of size N and
decompose two multiplexors, i.e. four matrix/matrix products of
size N/2 and two eigenvalue decompositions of size N/2 too. This
represents a total of 2×N3

+4×2×(N/2)3+2×26×(N/2)3 = 19
2 ×

N3 flops. Then to pursue the algorithm we have to perform the
same operations on 4 matrices of size N/2, then on 16 matrices of
size N/4, etc. Overall, with N = 2n we can approximate the total
number of flops to 19 × 8n which is very expensive. In the next
section we propose an alternative method based on Householder
transformations. Strongly connected to classical results about QR
decomposition, this method aims at achieving better performance
in the synthesis of quantum circuits by finding a compromise
between circuit size and calculation time.

Fig. 6. Matrix pattern at step kth of Householder transformation.

3. Householder algorithm for unitary matrices

In this section, we first recall the main principles of the QR
factorization of a general complex square matrix via Householder
transformations. Then we consider the special case of unitary
matrices that correspond to quantum operators.

The QR decomposition of a matrix A ∈ Cn×n expresses A as
the product of a unitary matrix Q ∈ U(n) and an upper triangular
matrix R. A standard algorithm to compute such a factoriza-
tion consists in applying a series of Householder transformations
[31, p. 209] zeroing out successively the subdiagonal entries of
each column.

At step k (1 ≤ k ≤ n − 1) of the QR algorithm, we zero out
all but the first entry of the vector b in the matrix depicted in
Fig. 6 using the Householder transformation, H ′k = In − τkuku

†
k ,

where uk ∈ Cn−k+1 and τk = 2/u†
kuk. Note that in the complex

case, the Householder matrix H ′k can be sometimes referred to as
‘‘elementary unitary matrix’’ (e.g. in [63]).

Then the kth iteration ends with the computation of the matrix

A(k)
= HkA(k−1),

with Hk =

(
Ik−1 0
0 H ′k

)
, A(0)

= A and H1 = H ′1. This operation

updates B(k)
= A(k)(k : n, k : n) via the relation(

In−k+1 − τkuku
†
k

)
B(k)
= B(k)

− τkuk

((
B(k))† uk

)†
, (4)

which zeros out the subdiagonal entries in column k (but does
not affect the zeros already introduced in previous columns). The
problem is now to find the vector uk ∈ Cn−k+1 such that(
In−k+1 − τkuku

†
k

)
b = (βk, 0, . . . , 0)T = βke1.

with βk ∈ C. From [31, p. 233], we have uk = b ± eiθ∥b∥e1 with
θ = arg(b1) but various choices for uk have been proposed in
numerical libraries (see [63] for a review of these choices).

At the end of the algorithm we have computed a set of n− 1
Householder transformations H1,H2, . . . ,Hn−1 such that(

n−1∏
i=1

Hn−i

)
A = R
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where R is upper triangular. Since the Householder matrices are
Hermitian, we obtain

A =

(
n−1∏
i=1

Hi

)
R = QR.

In the QR algorithm, the Householder matrices H ′k never need to
be explicitly formed and the expensive part of the computation
is the update of the matrix B(k), given in Eq. (4), which requires at
each iteration a matrix–vector multiplication followed by a rank-
1 update of B(k). The total cost of the factorization is about 4

3n
3

complex flops ( 163 n3 real flops).
A block version of the algorithm uses the fact that a product of

p Householder matrices H1× . . .×Hp can be written as I − VTV †

where V is an n × p rectangular matrix with the Householder
vector uk ∈ Cn at the kth column and T is an upper triangular
matrix [64]. The algorithm consists in partitioning A into blocks
of size n×nA for some nA, factorizing the first block and updating
the remaining blocks via the operation (we use a matlab-like
notation)

A(:, nA + 1 : n) = A(:, nA + 1 : n)− VTV †A(:, nA + 1 : n),

and repeating the process with the next block until the whole
matrix is triangularized. The update is richer in BLAS 3 opera-
tions [65], potentially leading to better performance, yet without
decreasing the flop count [66].

Let now exploit the specificity of quantum operators where
the corresponding matrix A is unitary and see how the QR de-
composition simplifies. In this case, the triangular factor is also
unitary and thus diagonal and the QR algorithm of A consists
in a progressive diagonalization of A. For sake of simplification,
we detail in the remainder only the first iteration. Let b =
(b1, . . . , bn)T be the first column of the unitary matrix A and r =
(r1, . . . , rn) its first row. We choose the value of the Householder
vector u = b ± eiθ∥b∥e1 as defined in [31, p. 233] but we will
choose the sign ‘‘+’’. This choice has the advantage of maximizing
∥b∥ (for sake of stability [31, p. 233]) and of simplifying the final
decomposition of the quantum operator into elementary circuits,
as we will see in Section 4. Since A (and A(k) at the kth iteration)
is unitary, we have ∥b∥ = 1 and we get

u = b+ eiθe1

and

τ =
2
∥u∥2

=
2

∥b∥2 + ∥e1∥2 + 2|b1|
=

1
1+ |b1|

.

Then applying the Householder transformation H to b gives

Hb = −eiθ∥b∥e1 = −eiθe1. (5)

The gain in complexity occurs in the update phase. Using the
orthonormality of the vectors of A, the update expressed in Eq. (4)
simplifies to

HA = A−τ (b+eiθe1)
(
A† (b+ eiθe1

))†
= A−τ (b+eiθe1)(eT1+e

−iθ r).

Then we have

HA = A− τ (beT1 + eiθe1eT1 + e1r + e−iθbr).

The first column of A does not need to be updated in this compu-
tation because of Eq. (5) then we can ignore the term beT1+e

iθe1eT1 .
Similarly the first row of A does not need to be updated because
the unitarity of the rows of A ensures that r = −eiθeT1 after
application of H . Moreover τe−iθ = 1/(eiθ + |b1|eiθ ) = 1/(b1 +
eiθ ) = 1/u1, where u1 denotes the first component of u. So we
are left with the rank-1 update

(HA)2:n,2:n = A2:n,2:n −
b(2 : n) · r(2 : n)

u1
.

The matrix–vector product expressed in Eq. (4) for the classical
QR factorization is avoided. The matrix obtained after the first
iteration is then

A(1)
=

(
−eiθ 0
0 (HA)2:n,2:n

)
and we can continue the algorithm on the unitary matrix A(1)(2 :
n, 2 : n) and so on, until A becomes diagonal. The update at the
kth iteration requires only (n − k)2 multiplications and (n − k)2
additions. Finally this new algorithm requires

∑n−1
k=1 2×(n−k)2 ∼

2
3n

3 complex flops, which is twice as less than the standard case.
It is possible to choose the vector u such that u1 = 1, then

the value of τ will be adjusted so that the resulting Householder
transformation H remains the same. More precisely, keeping the
notations above we set

u←
1

eiθ (1+ |b1|)
u (6)

and we obtain τ = (1+|b1|) and then the update phase becomes

(HA)2:n,2:n = A2:n,2:n − u(2 : n) · r(2 : n). (7)

The algorithm can easily be done in place. One can store the
Householder vectors in the strictly lower triangular part of A, the
diagonal elements of R are stored in the diagonal and the τi’s are
stored in a specific array.

The main cost of the algorithm resides in the rank-one update
phase in Eq. (7). In order to use more optimized BLAS 2 and BLAS
3 operations we can derive from Eq. (7) new update relations.
Suppose we have already performed the factorization and the
update for the first nb rows and columns for some nb. Therefore
the first nb columns of A contain the Householder vectors, and
the block A(1 : nb, nb+1 : n) has been updated following (7). Let
i, j ∈ [[nb + 1, n]], one can verify that the update of the element
A(i, j) is given by

A(i, j)← A(i, j)−
nb∑
k=1

A(i, k)× A(k, j) (8)

by simply applying successively the update (7).
In terms of matrix and vector operations we have

A(i, nb+1 : n)← A(i, nb+1 : n)−A(i, 1 : nb)×A(1 : nb, nb+1 : n)
(9)

for the update of one row,

A(nb+1 : n, j)← A(nb+1 : n, j)−A(nb+1 : n, 1 : nb)×A(1 : nb, j)
(10)

for the update of one column and

A(nb+ 1 : n, nb+ 1 : n)←
A(nb+ 1 : n, nb+ 1 : n)− A(nb+ 1 : n, 1 : nb)
× A(1 : nb, nb+ 1 : n) (11)

for the update of the full matrix. This last update is a BLAS 3
operation and can potentially yield higher performance on hybrid
CPU–GPU architectures [67].

Using these new update relations we can improve the algo-
rithm by three means:

• first we can improve the unblocked algorithm. Instead of
updating the whole matrix at each iteration with a rank
one update we only update one row and one column: at
the kth iteration we have computed the kth Householder
vector and we update the row A(k + 1, k + 1 : n) and the
column A(k+1 : n, k+1) via the relations (9) and (10). Such
updates consist in more and bigger matrix/vector operations
and experimentally it appears to scale better.
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• Secondly this naturally leads to a blocked version of the
algorithm. Let nb be the size of our block. Once we have
done the computations on the first nb rows and nb columns
of A with an unblocked version, we can update the rest of
the matrix with a matrix/matrix product via Eq. (11) and
continue the algorithm on the matrix A(nb+1 : n, nb+1 : n)
until we reach the last block where the unblocked algorithm
is applied.
• A third improvement can be made in order to avoid using

the unblocked algorithm to compute the full panel of nb
rows and columns of A. Indeed the update of the blocks
A(nb + 1 : n, 1 : nb) and A(1 : nb, nb + 1 : n) can be
performed with BLAS 3 operations. One can prove that there
exist triangular matrices T i

1, T
i
2 of size i × i, i = 1..nb such

that

A(i+ 1 : n, 1 : i)← A(i+ 1 : n, 1 : i)× T i
1 (12)

A(1 : i, i+ 1 : n)← T i
2 × A(1 : i, i+ 1 : n). (13)

The matrices T i
1, T

i
2 are computed using the following recur-

sive formula:

T 1
1 = 1, T i+1

1 =

(
T i
1 −pi+1T i

1/Ni
1/Ni

)
, (14)

T 1
2 = 1, T i+1

2 =

(
T i
2

−qi+1T i
2 1

)
(15)

with pi = A(1 : i, i), qi = A(i, 1 : i). Ni is the normalization
factor expressed in Eq. (6).
Proof of Formulas (12)to(15). By induction on i. We do it
for T2 only. The case i = 1 is trivial because we do not have
to update the first row. Now suppose the result is true for
some i, 1 ≤ i < nb. The first i rows are already updated by
the application of T i

2, we only need to update the next row
i+1. Let A(i+1, j), j ∈ [[nb+1, n]] be an element of this row.
If the column A(1 : i, j) was already updated the update of
A(i+ 1, j) would be given by Eq. (8), i.e.

A(i+ 1, j)← A(i+ 1, j)−
i∑

k=1

A(i+ 1, k)× A(k, j).

Written differently A(i + 1, j) ← A(i + 1, j) − A(i + 1, 1 :
i + 1) · A(1 : i, j). By hypothesis A(1 : i, j) is updated by the
relation A(1 : i, j)← T i

2A(1 : i, j). This gives

A(i+ 1, j)← [−A(i+ 1, 1 : i+ 1)× T i
2 ; 1] · A(1 : i+ 1, j).

Doing it for all j and concatenating it with the update of the
first i rows by the action of T i

2 gives the result. The same
thing can be done with T1 but one has to be careful about
the normalization of the Householder vectors. □

Therefore T nb
1 and T nb

2 only depend on the block A(1 : nb, 1 :
nb) and can be used to update A(nb + 1 : n, 1 : nb) and A(1 :
nb, nb + 1) in two BLAS 3 updates. This means that during an
iteration we only need to perform an unblocked Householder
factorization on a square matrix of size nb and then perform 3
BLAS 3 updates. The pseudo code of the algorithm is given in
Algorithm 1 (we call the corresponding routine ZUNQRF and its
unblocked version ZUNQR2). ZLARFT2 refers to the adaptation
of the standard ZLARFT routine that computes the triangular
matrices.

Thanks to the above QR decomposition resulting in a product
of Householder matrices and a diagonal matrix, we store the
information of a unitary matrix into the subdiagonal part of the
complex matrix (the Householder vectors), and two real vectors
containing the θ ’s (angles of the diagonal entries) and the τ ’s. In
the next section we use this factorization of unitary operators to
obtain quantum circuits.

Algorithm 1 Householder factorization of a unitary matrix A -
ZUNQRF
Require: N ≥ 0, A∈ UN
Ensure: A = QR

// NX determines when to switch from blocked to unblocked
code
// NB is the block size
for I = 1,NX,NB do

IB← MIN(N − I + 1,NB)
call ZUNQR2( IB, IB, A( I, I ), TAU( I ) )
T1, T2 ← ZLARFT2( N, IB, A( I, I ), TAU( I ) )
update A(I : N, I : I + IB) via a call to ZTRMM
if I + IB ≤ N then

update A(I : I + IB, I : N) via a call to ZTRMM
update A(I + IB : N, I + IB : N) via a call to ZGEMM

end if
end for
if I ≤ N then

call ZUNQR2( N-I+1, N-I+1, A( I, I ), TAU( I ) )
end if

4. From the Householder decomposition to a quantum circuit

In this section we develop several methods to convert the
Householder representation of a unitary matrix into a quantum
circuit. We present a general method in Section 4.1 and we
optimize it in Section 4.2.

4.1. General method

Let U ∈ U(2n) be the unitary matrix we want to synthesize.
The QR factorization of U gives normalized vectors u1, u2, . . . ,
u2n−1 and a diagonal matrix D such that

U =
2n−1∏
i=1

Hi × D.

where Hi are Householder matrices defined by Hi = I2n − 2uiu
†
i

as in Section 3 (since the ui are normalized). The synthesis of a
diagonal operator is a well-known problem [24,68]. Therefore, the
main issue is the synthesis of the Householder matrices. We recall
that

Hiui = −ui

and

∀v, v ⊥ ui ⇒ Hiv = v.

Consequently, for any unitary matrix Pi whose first column is ui
we can write

Hi = PiDGP
†
i (16)

with

DG =

⎛⎜⎜⎝
−1

1
. . .

1

⎞⎟⎟⎠ .
Indeed, Pi can be regarded as an orthonormal basis of vector
columns containing ui. In other words, Eq. (16) is a diagonaliza-
tion of Hi.

From this analysis, we get the following decomposition of the
unitary matrix U

U =
2n−1∏
i=1

PiDGP
†
i × D



8 T. Goubault de Brugière, M. Baboulin, B. Valiron et al. / Computer Physics Communications 248 (2020) 107001

Fig. 7. A first circuit for the Householder method.

and we can derive a quantum circuit as depicted in Fig. 7.

• As mentioned already, the synthesis of D is a problem with
known solutions.
• Each block PiDGP

†
i is equivalent to de-preparing the state ui,

applying DG and re-preparing the state ui.

– The matrix DG is the ‘‘zero phase shift’’ operator and
is used for instance in the Grover diffusion operator in
Grover’s algorithm [3].

– In our circuits we use the notation SP(v) to refer to a
black box who prepares the state v. Although many
different operators can prepare the state v we insist
on the fact that in one circuit the operators preparing
and de-preparing the same state are exactly the same,
otherwise the decomposition would not be valid. Many
previous research studies have sought to optimize the
preparation of states and we use their results for our
synthesis [21,23,69].

4.2. Resources estimation

We now turn to the question of the size of the circuit sketched
in Fig. 7 (measured in number of CNOTs), and to the compu-
tational cost to generate the circuit (measured in flops). In this
section we only give asymptotic results which are summarized
in Tables 2 and 3.

Asymptotically, it turns out that the synthesis of D and DG are
negligible. Using existing methods one can synthesize D in O(2n)
gates, while the series of 2n

− 1 subcircuits DG requires at most
O((2n

− 1)n2) gates [70] (when n is the number of qubits). As we
will see in the following, the synthesis of the Pi’s requires O(4n)
gates: this is the dominant factor.

The complexity of the size of the circuit is therefore essentially
due to the preparation and de-preparation of quantum states.
Because of the structure of the problem, we can do better than
systematically applying state preparation on n qubits for each
of the ui vectors. We describe two successive optimizations. The
first one relies on the possibility to perform state preparations
on less than n qubits; the second one proposes to fuse adjacent
sequences of de-preparations and preparation of states.

4.2.1. Optimization based on state preparation
When preparing ui, if only the last 2k elements of ui ∈ C2n

are nonzero, the state is encodable on k qubits only. This means
that a k-qubit operator can prepare the state u′i ∈ C2k such that
ui = ( 0

u′i
). Let Q be such an operator, then the operator

P = X⊗(n−k) ⊗ Q

=

⎛⎝(0) 1

. .
.

1 (0)

⎞⎠⊗ (u′i (∗)

)
=

(
0 ∗

u′i ∗

)
prepares ui. A quantum circuit to illustrate this is given in Fig. 8.

Thus, up to the operators X , D and DG, we observe that the
Householder method breaks down as follows: the synthesis of the
first 2n−1 columns is done via operators acting on n qubits, then
the next 2n−2 columns are synthesized with operators acting on
n− 1 qubits, etc.

Fig. 8. Desentangling one qubit in state preparation.

In [70] the concept of isometries is formalized. Formally, with
n > m, an m to n qubits isometry can be represented as a 2n

×2m

matrix V such that

V †V = I2m×2m .

The data of the 2m first columns of an operator on n qubits can
be regarded as such an isometry V . For instance an isometry from
0 to n qubits is a quantum state on n qubits. Synthesizing an
isometry from n − 1 to n qubits is equivalent to synthesizing
the first 2n−1 columns of an n-qubit operator. With this formal-
ism the synthesis of an n-qubit operator via the Householder
method naturally leads to synthesizing n isometries, more pre-
cisely, isometries from k−1 to k qubits for k from 1 to n. Therefore
we introduce the following notations:

• hk refers to the number of CNOTs necessary to the synthesis
of an isometry from k− 1 to k qubits with the Householder
method,
• cn refers to the number of CNOTs necessary to the synthesis

of an n-qubit operator with the Householder method,

and, referring to the discussion above, we have

cn ∼
n∑

k=1

hk. (17)

With this decomposition we voluntarily omit the side-effects that
may occur between two subcircuits acting on a different number
of qubits — typically the transition between the subcircuit prepar-
ing states on j qubits only and the subcircuit preparing states on
j + 1 qubits. These side-effects are asymptotically negligible and
not taking them into account highly simplifies the calculations.

We are concerned with estimating cn: to this end we focus on
the estimation of hk. A lower bound to the asymptotic behavior
of hk is given in [70]:

hmin
k =

3
16

4k
+ o(4k).

With Eq. (17) we derive the lower bound 1
44

n for cn.
With our current circuit, we have

hk ∼ 2× (2k−1)× pk (18)

where pk is the number of CNOTs required to prepare a state
on k qubits. The value pk varies depending on the structure of
subcircuits we consider [21]:

• with rotation multiplexors, pk = 2k+1, hk ∼ 2× 4k, hence

cn ∼
8
3
4n
;

• with multiplexors in SU(2), pk = 2k, hk ∼ 4k and

cn ∼
4
3
4n.
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Fig. 9. Quantum circuit designed by the Householder method for 3 qubits.

Table 2
Asymptotic gate counts for decomposition methods.
Method CNOT count Rotation count

QR 8.7× 4n Unavailable
Quantum Shannon 23/48× 4n 9/8× 4n

Householder (with rotation multiplexors) 2× 4n 2× 4n

Householder (with multiplexors in SU(2)) 4n 2× 4n

Lower bound 1/4× 4n 4n

The same calculation can be done for the number of rotations
in the circuit. Actually, Eqs. (17) and (18) highlight the decom-
position of the quantum circuit into smaller subcircuits, and
thus remain true by replacing the number of CNOTs with the
number of elementary rotations. A quantum state preparation on
n qubits requires 2n+1 rotations, whether using rotations or SU(2)
multiplexors [21]. Overall the number of rotations rn required for
the synthesis of a n-qubit operator with the Householder method
is

rn =
8
3
4n.

4.2.2. Optimizing adjacent state preparations and de-preparations
We now focus on the concatenations of the adjacent subcir-

cuits SP(ui+1) and SP(ui)† in the circuit of Fig. 7. These sequences
of operations can indeed be optimized.

To this end we need to look into more details to the state
preparation circuits. A circuit P that prepares the state ψ on n
qubits can be decomposed as

P = DY

where

D =

⎛⎝eiθ1
. . .

eiθ2n

⎞⎠
such that θj = arg(ψ(j)) and Y prepares the real state

Ψ =

⎛⎝ |ψ1|
...

|ψ2n |

⎞⎠ .
Y can be synthesized with only Ry rotations by following the
standard methodology for state preparation [23] without caring
about the phases equal to 0. Using this decomposition the prod-
ucts preparation/de-preparation that we encounter in the global
decomposition are of the form

P†
j Pi = Y T

j D
∗

j DiYi

and the diagonal matrices can merge, thus diminishing the size
by a cost of a diagonal matrix. In total 2k−1

− 1 diagonals on k
qubits vanish. Asymptotically this represents a gain of 2/3 × 4n

CNOTs and 2/3 × 4n rotations if we use rotation multiplexors,
bringing the total to 2× 4n CNOTs and 2× 4n rotations. If we use
multiplexors in SU(2), only multiplexors on k qubits are merging
and not diagonal anymore, saving twice less CNOTs but the same
number of rotations. We save in total 1/3×4n CNOTs and 2/3×4n

rotations and the number of CNOTs, resp. rotations, becomes
asymptotically equal to 4n, resp. 2 × 4n. We also notice that the

Table 3
Asymptotic flop counts for decomposition methods.
Method Flops

Quantum Shannon 19× 8n

Householder 2/3× 8n

Classical QR factorization 4/3× 8n

operators X that appear when we switch to synthesis on a lower
number of qubits disappear too by multiplying themselves. An
example on 3 qubits is shown in Fig. 9. We use the following nota-
tion: |vk| (resp. |vTk |) represents the operator that prepares (resp.
deprepares) the real state |vk| consisting of the amplitudes of the
components of the state vk. Dk is the diagonal gate containing the
phases of the components of the state vk and Dj

k = D∗j × Dk. The
results for the final gate counts are given in Table 2.

4.2.3. Flop counts
Apart from the circuit size, the other measure we are inter-

ested in is the computational cost, measured in flops.
The computational cost of the synthesis part is negligible

compared to the cost of the Householder decomposition. Overall
state preparations of states of size 2n, 2n

− 1, . . . , 3, 2 need to be
performed. For a state on k qubits, it requires O(k2k) operations,
and we need to do it for 2k−1 states. Thus the synthesis part needs
around
n∑

k=1

k2k
× 2k−1

= O(n4n)

floating point operations. This is asymptotically negligible com-
pared to the Householder factorization where O(8n) operations
are needed. Table 3 summarizes the flop count for the various
methods.

5. Experimental results

The experiments have been carried out on one node of the
QLM (Quantum Learning Machine) located at ATOS/BULL. This
node is a 24-core Intel Xeon(R) E7-8890 v4 processor at 2.4 GHz.
Hyper-threading has been disabled.

Most of the programs are written in C with the C-interface
for LAPACK [71] (LAPACKE). We adapted the LAPACK routine
ZGEQRF (in Fortran) to compute the QR factorization of unitary
matrices using the blocked algorithm described in Section 3.
LAPACK is linked with the MKL [72] multithreaded BLAS. The
original ZGEQRF routine computes the best block size according
to the size of the matrix and the hardware, we keep this com-
putation in our modified routine. Our experiments use random
unitary matrices generated via the LAPACK routine ZLAROR which
generate matrices from a uniform distribution according to the
Haar measure [73]. This way we get the most generic matrices
possible: dense, without any particular structure or pattern in
the matrix elements. We are thus ensured to have a worst case
scenario in terms of performance for our algorithms.

We present here numerical experiments to evaluate succes-
sively the sequential performance, the strong scalability and the
weak scalability using multiple cores.



10 T. Goubault de Brugière, M. Baboulin, B. Valiron et al. / Computer Physics Communications 248 (2020) 107001

Fig. 10. Sequential time for operator decomposition and circuit synthesis.

5.1. Sequential runs

In Fig. 10 we compare the performance (in time) of the fol-
lowing routines or programs:

• The LAPACK routine ZGEQRF that computes the QR factor-
ization of a complex matrix in double precision (note that
here the matrix is square), to serve as a reference.
• Our modified ZGEQRF routine adapted for unitary matrices.
• The complete circuit synthesis process which includes the

QR factorization and the synthesis of the circuit obtained
from this decomposition as explained in Section 4.
• The Quantum Shannon Decomposition (QSD), where the

implementation essentially relies on the methodology de-
scribed in [23] and uses the LAPACK routine ZUNCSD to
compute the Cosine–Sine Decomposition (CSD). The rou-
tine implements the algorithm in [61]. This algorithm is
the state of the art and has already been used in other
implementations [74,75].

We considered matrices of sizes 2k
×2k, k = 1 . . . 15 (operators

acting on 1 to 15 qubits). The upper limit of 15 was chosen so that
all decompositions can be achieved within an hour. This is why
the curve plotting the QSD decomposition stops for 12 qubits.

As expected all the methods follow asymptotically O(8n) (curve
also plotted) in accordance with the theoretical complexity. The
gap between the general and modified QR factorizations in log
scale corresponds approximatively to a factor of 2, in accordance
with the flop count.

When comparing the QR and QSD methods, we observe that
for the same amount of time we can synthesize matrices with
2, almost 3 qubits more. The ratio between the times taken by
the QSD and our method is even increasing with the number of
qubits, reaching a value of almost 300 for 12 qubits which is much
bigger than the expected ratio of 30. This is due to the routine
ZUNCSD that does not follow the theoretical complexity and does
not scale well with the number of qubits.

5.2. Multithreaded runs

Because we could reach 15 qubits (unitary matrices of size
32768 × 32768) with a sequential run in less than one hour, we
chose this size for our multithreaded runs. The strong scalability
is then evaluated using up to 24 threads. Since the ZUNCSD
routine used for the QSD is not parallel, it has been excluded
from our experiments. Fig. 11 presents performance results (in

Fig. 11. Strong scaling for quantum operator decomposition and circuit synthesis
on 15 qubits.

Fig. 12. Weak scaling for quantum operator decomposition on 15 qubits.

time and Gflop/s) for the chosen number of threads. The time of
the modified ZGEQRF scales like the full circuit synthesis since
the QR factorization represents most of the computational cost
in the synthesis. Also, due to a smaller flop count, the modified
QR is always much faster than the general QR. Moreover, looking
at the Gflop/s performance rate, we observe that our modified QR
factorization offers a good scalability due to an algorithm which
is rich in BLAS 3 operations and provides a performance close to
that of a matrix–matrix product (ZGEMM routine, also plotted in
Fig. 11). Note that the Gflop/s rate for the full circuit synthesis is
not plotted since the bulk of the arithmetical operations corre-
spond to those of the factorization and the time of the synthesis
itself is negligible.

Our experiments on weak scaling aim at measuring how the
performance evolves with the number of threads but with a fixed
problem size for each thread. Our algorithm for circuit synthesis
can only accept matrices of size 2n

× 2n, i.e. 4n entries. As we can
only multiply the size of our problems by a factor of 4, we need to
multiply also the number of threads by a factor of 4. Thus, starting
from a sequential run on 13 qubits, we achieved experiments on
14 and 15 qubits using 4 and 16 threads, respectively. The results
given in Fig. 12 show that the rate (in Gflop/s) of the modified
ZGEQRF increases with the number of threads/qubits with a very
good scalability (close to that of ZGEMM) due to the mostly BLAS
3 operations implemented in the algorithm.
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Fig. 13. Time for factorization of unitary matrices on GPUs.

5.3. Experiments on Graphics Processing Units (GPU)

We performed additional experiments to study the behavior
of our QR algorithm for unitary matrices using two Kepler K40
with 2880 CUDA cores and a multicore host composed of two
Intel Xeon E5-2620 processors (6 cores each). The time for the
synthesis is not plotted here since it is negligible compared to
the time of the QR factorization.

Similarly to what was made previously with the LAPACK rou-
tine, we modified the QR routine from the MAGMA [67] linear
algebra library for GPUs according to Algorithm 3.1. Note that the
transfer of the panel (block column factorized at each iteration)
from the CPU to the GPU performed in MAGMA is replaced by
a transfer of the 2 triangular matrices mentioned in Section 3
which are broadcasted to the GPUs involved in the computation.
In Fig. 13, we obtain the factor of 2 (due to twice less flops)
between the standard and the modified QR factorization. We also
observe that using 2 GPUs has no interest for problems smaller
than 12 qubits but we get a factor close to 2 (e.g., 1.84 for 15
qubits) when switching from 1 to 2 GPUs for problems larger than
13 qubits, showing a good scalability of the algorithm.

6. Conclusion

In this work we recalled the fundamentals of quantum com-
puting and we stated the problem of quantum circuit synthesis.
We highlighted the importance of having an efficient circuit
synthesis framework by considering metrics based on flop and
gate counts. To address this issue we presented a modified QR
factorization in complex arithmetic based on Householder trans-
formations where we exploit the specificities of unitary matrices
to require twice as less flops and we proposed a scalable blocked
implementation that contains mostly level-3 BLAS operations.
Then we described a method to convert the QR factorization into
a quantum circuit with clearly defined properties. Our method
results in a significant gain in time compared to the best methods
in quantum compiling. As future work, we will study the behavior
of our method on bigger problems using large distributed HPC
systems. In terms of circuit size, some improvements may be
obtained by studying in more detail the optimization of state
preparation occurring during the process.
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